这次安装是带有GPU的安装,若是没有GPU只安装CPU,可参考个人另外一篇文章,搞深度学习还得有显卡吃硬件,要不等着吐血吧。
一、安装环境:ubuntu16.04+caffe-master+cuda8.0+cudnnv5.1 ,安装环境所需的安装包我已打包上传,下载地址.http://www.roselady.vip/a/cangjingge/boke/ai/2018/0322/709.html
二、安装caffe依赖包html
1 |
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler |
3 |
sudo apt-get install --no- install -recommends libboost-all-dev |
5 |
sudo apt-get install libatlas-base-dev |
7 |
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev |
|
三、ubuntu16.04最好是安装cuda8.0不要安最新,听官网的没错。下载cuda8.0,https://developer.nvidia.com/cuda-downloads
四、卸载之前的旧驱动准备换最新的linux
1 |
sudo apt-get --purge remove nvidia-\* |
|
五、禁止集成的nouveau驱动,必须禁止的不然没可能安装成功的。ubuntu
1 |
sudo vi /etc/modprobe.d/blacklist-nouveau.conf |
|
1 |
<span style= "font-size:16px;" >blacklist-nouveau.conf文件可能并不存在不过不要紧,向里面写入下面一句话,一个字都不能错 |
1 |
blacklist nouveau option nouveau modeset=0 |
|
保存退出后运行此命令,不能报错,报错了确定就没禁止成功app
1 |
sudo update-initramfs -u |
|
配置环境变量,直接用就行,反正是临时的工具
1 |
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH |
3 |
export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH |
|
六、安装显卡驱动,不然可能会报内核之类的错误学习
只需一条命令测试
1 |
sudo apt-get install nvidia- |
|
有人问上面那条命令没写完啊,其实就是写这么多,而后猛击tab键两次(也能够轻点),下面就会出来许多版本的驱动,固然是安装一个版本最高的,例如ui
1 |
sudo apt-get install nvidia-352 |
|
七、经过 Ctrl + Alt + F1 进入文本模式,输入账号密码登陆,经过 Ctrl + Alt + F7 可返回图形化模式,在文本模式登陆后
首先关闭桌面服务google
1 |
sudo service lightdm stop |
|
八、开始安装cuda,直接运行命令,出现0%后一直安回车直到100%,全选 yes便可spa
1 |
./cuda_8.0.61_375.26_linux.run --no-opengl-libs |
|
九、其实这样还不算,toolkit工具尚未安装成功,可能用nvcc –V测试
1 |
sudo apt install nvidia-cuda-toolkit |
|
十、验证 CUDA 8.0 是否安装成功,输入下面命令
1 |
cd /usr/ local /cuda-8.0/samples/1_Utilities/deviceQuery |
|
若是显示下面信息说明安装成功了。若是不行reboot重启一下
01 |
./deviceQuery Starting... |
03 |
CUDA Device Query (Runtime API) version (CUDART static linking) |
05 |
Detected 1 CUDA Capable device(s) |
07 |
Device 0: "GeForce GTX 650" |
08 |
CUDA Driver Version / Runtime Version 9.1 / 8.0 |
09 |
CUDA Capability Major/Minor version number: 3.0 |
10 |
Total amount of global memory: 978 MBytes (1025638400 bytes) |
11 |
( 2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores |
12 |
GPU Max Clock rate: 1058 MHz (1.06 GHz) |
13 |
Memory Clock rate: 2500 Mhz |
14 |
Memory Bus Width: 128-bit |
15 |
L2 Cache Size: 262144 bytes |
16 |
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) |
17 |
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers |
18 |
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers |
19 |
Total amount of constant memory: 65536 bytes |
20 |
Total amount of shared memory per block: 49152 bytes |
21 |
Total number of registers available per block: 65536 |
23 |
Maximum number of threads per multiprocessor: 2048 |
24 |
Maximum number of threads per block: 1024 |
25 |
Max dimension size of a thread block (x,y,z): (1024, 1024, 64) |
26 |
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) |
27 |
Maximum memory pitch: 2147483647 bytes |
28 |
Texture alignment: 512 bytes |
29 |
Concurrent copy and kernel execution: Yes with 1 copy engine(s) |
30 |
Run time limit on kernels: Yes |
31 |
Integrated GPU sharing Host Memory: No |
32 |
Support host page-locked memory mapping: Yes |
33 |
Alignment requirement for Surfaces: Yes |
34 |
Device has ECC support: Disabled |
35 |
Device supports Unified Addressing (UVA): Yes |
36 |
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0 |
|
十一、安装CUDNN加速
登陆官网:https://developer.nvidia.com/rdp/cudnn-download ,下载对应 cuda 版本且 linux 系统的 cudnn 压缩包,注意官网下载 cudnn 须要注册账号并登陆,我是从国内下载的v5.1版本,下载地址,使用下面命令进行解压
1 |
cp cudnn-8.0-linux-x64-v5.1.solitairetheme8 cudnn-8.0-linux-x64-v5.1.tgz |
3 |
tar xvf cudnn-8.0-linux-x64-v5.1.tgz |
|
十二、cuda和cudnn进行合并,按下面命令操做进入解压后的cuda目录
查看源码打印代码帮助
1 |
sudo cp include/cudnn.h /usr/ local /cuda/include/ #复制头文件 |
3 |
sudo cp lib64/lib* /usr/ local /cuda/lib64/ #复制动态连接库 |
4 |
cd /usr/ local /cuda/lib64/ sudo rm -rf libcudnn.so libcudnn.so.5 #删除原有动态文件 |
5 |
sudo ln -s libcudnn.so.5.1.10 libcudnn.so.5 #生成软衔接 |
6 |
sudo ln -s libcudnn.so.5 libcudnn.so #生成软连接 |
|
1三、到这基本也就完事了,下载caffe,解压,创建编译文件夹build-x64,进入后执行下面命令便可,大功告成