前面分别介绍了拓扑排序的C和C++实现,本文经过Java实现拓扑排序。html
目录
1. 拓扑排序介绍
2. 拓扑排序的算法图解
3. 拓扑排序的代码说明
4. 拓扑排序的完整源码和测试程序java转载请注明出处:http://www.cnblogs.com/skywang12345/node
更多内容:数据结构与算法系列 目录git
拓扑排序(Topological Order)是指,将一个有向无环图(Directed Acyclic Graph简称DAG)进行排序进而获得一个有序的线性序列。github
这样说,可能理解起来比较抽象。下面经过简单的例子进行说明!
例如,一个项目包括A、B、C、D四个子部分来完成,而且A依赖于B和D,C依赖于D。如今要制定一个计划,写出A、B、C、D的执行顺序。这时,就能够利用到拓扑排序,它就是用来肯定事物发生的顺序的。算法
在拓扑排序中,若是存在一条从顶点A到顶点B的路径,那么在排序结果中B出如今A的后面。数组
拓扑排序算法的基本步骤: 数据结构
1. 构造一个队列Q(queue) 和 拓扑排序的结果队列T(topological);
2. 把全部没有依赖顶点的节点放入Q;
3. 当Q还有顶点的时候,执行下面步骤:
3.1 从Q中取出一个顶点n(将n从Q中删掉),并放入T(将n加入到结果集中);
3.2 对n每个邻接点m(n是起点,m是终点);
3.2.1 去掉边<n,m>;
3.2.2 若是m没有依赖顶点,则把m放入Q;
注:顶点A没有依赖顶点,是指不存在以A为终点的边。测试
以上图为例,来对拓扑排序进行演示。ui
第1步:将B和C加入到排序结果中。
顶点B和顶点C都是没有依赖顶点,所以将C和C加入到结果集T中。假设ABCDEFG按顺序存储,所以先访问B,再访问C。访问B以后,去掉边<B,A>和<B,D>,并将A和D加入到队列Q中。一样的,去掉边<C,F>和<C,G>,并将F和G加入到Q中。
(01) 将B加入到排序结果中,而后去掉边<B,A>和<B,D>;此时,因为A和D没有依赖顶点,所以并将A和D加入到队列Q中。
(02) 将C加入到排序结果中,而后去掉边<C,F>和<C,G>;此时,因为F有依赖顶点D,G有依赖顶点A,所以不对F和G进行处理。
第2步:将A,D依次加入到排序结果中。
第1步访问以后,A,D都是没有依赖顶点的,根据存储顺序,先访问A,而后访问D。访问以后,删除顶点A和顶点D的出边。
第3步:将E,F,G依次加入到排序结果中。
所以访问顺序是:B -> C -> A -> D -> E -> F -> G
拓扑排序是对有向无向图的排序。下面以邻接表实现的有向图来对拓扑排序进行说明。
1. 基本定义
public class ListDG { // 邻接表中表对应的链表的顶点 private class ENode { int ivex; // 该边所指向的顶点的位置 ENode nextEdge; // 指向下一条弧的指针 } // 邻接表中表的顶点 private class VNode { char data; // 顶点信息 ENode firstEdge; // 指向第一条依附该顶点的弧 }; private VNode[] mVexs; // 顶点数组 ... }
(01) ListDG是邻接表对应的结构体。 mVexs则是保存顶点信息的一维数组。
(02) VNode是邻接表顶点对应的结构体。 data是顶点所包含的数据,而firstEdge是该顶点所包含链表的表头指针。
(03) ENode是邻接表顶点所包含的链表的节点对应的结构体。 ivex是该节点所对应的顶点在vexs中的索引,而nextEdge是指向下一个节点的。
2. 拓扑排序
/* * 拓扑排序 * * 返回值: * -1 -- 失败(因为内存不足等缘由致使) * 0 -- 成功排序,并输入结果 * 1 -- 失败(该有向图是有环的) */ public int topologicalSort() { int index = 0; int num = mVexs.size(); int[] ins; // 入度数组 char[] tops; // 拓扑排序结果数组,记录每一个节点的排序后的序号。 Queue<Integer> queue; // 辅组队列 ins = new int[num]; tops = new char[num]; queue = new LinkedList<Integer>(); // 统计每一个顶点的入度数 for(int i = 0; i < num; i++) { ENode node = mVexs.get(i).firstEdge; while (node != null) { ins[node.ivex]++; node = node.nextEdge; } } // 将全部入度为0的顶点入队列 for(int i = 0; i < num; i ++) if(ins[i] == 0) queue.offer(i); // 入队列 while (!queue.isEmpty()) { // 队列非空 int j = queue.poll().intValue(); // 出队列。j是顶点的序号 tops[index++] = mVexs.get(j).data; // 将该顶点添加到tops中,tops是排序结果 ENode node = mVexs.get(j).firstEdge;// 获取以该顶点为起点的出边队列 // 将与"node"关联的节点的入度减1; // 若减1以后,该节点的入度为0;则将该节点添加到队列中。 while(node != null) { // 将节点(序号为node.ivex)的入度减1。 ins[node.ivex]--; // 若节点的入度为0,则将其"入队列" if( ins[node.ivex] == 0) queue.offer(node.ivex); // 入队列 node = node.nextEdge; } } if(index != num) { System.out.printf("Graph has a cycle\n"); return 1; } // 打印拓扑排序结果 System.out.printf("== TopSort: "); for(int i = 0; i < num; i ++) System.out.printf("%c ", tops[i]); System.out.printf("\n"); return 0; }
说明:
(01) queue的做用就是用来存储没有依赖顶点的顶点。它与前面所说的Q相对应。
(02) tops的做用就是用来存储排序结果。它与前面所说的T相对应。