Tensorflow快餐教程(10) - 循环神经网络

循环神经网络 上节介绍了在图像和语音领域里大放异彩引发革命的CNN。但是,还有一类问题是CNN所不擅长的。这类问题的特点是上下文相关序列,比如理解文字。这时需要一种带有记忆的结构,于是,深度学习中的另一法宝RNN横空出世了。 大家还记得第8节中我们讲的人工神经网络的第二次复兴吗?没错,第二次复兴的标志正是1984年加州理工学院的物理学家霍普菲尔德实现了他于两年前提出的一种循环神经网络模型。这种网络
相关文章
相关标签/搜索