论文笔记:SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

前言 SegNet 的新颖之处在于解码器对其较低分辨率的输入特征图进行上采样的方式。具体地说,解码器使用了在相应编码器的最大池化步骤中计算的池化索引(记录了最大池化时最大值所在的位置)来执行非线性上采样。这种方法消除了学习上采样的需要。经上采样后的特征图是稀疏的,因此随后使用可训练的卷积核进行卷积操作,生成密集的特征图。我们将我们所提出的架构与广泛采用的 FCN 以及众所周知的 DeepLab-L
相关文章
相关标签/搜索