JavaShuo
栏目
标签
Bond behaviour with reinforcement corrosion
时间 2021-01-22
标签
土木工程文献阅读锈蚀
繁體版
原文
原文链接
作者:F. Tondolo 标题:Bond behaviour with reinforcement corrosion 来源:Construction and Building Materials 思想上,值得注意与学习的是,该篇文献考虑到应该是箍筋先锈蚀,或者说箍筋与主筋均发生锈蚀的情况。 试验:主筋为12mm,构件的尺寸如下。砂:石:混凝土=1:2.6:3.7,最大骨料粒径为14mm,水灰
>>阅读原文<<
相关文章
1.
Bond behaviour of corroded reinforcing steel bars in concrete
2.
Generating Text with Deep Reinforcement Learning
3.
Continuous control with Deep Reinforcement Learning
4.
Playing Atari with Deep Reinforcement Learning
5.
Playing atari with deep reinforcement learning
6.
NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING
7.
Paper Reading:NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING
8.
论文笔记——NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING
9.
NIPS-2013:Playing Atari with Deep Reinforcement Learning
10.
解读continuous control with deep reinforcement learning(DDPG)
更多相关文章...
•
XSLT
元素
-
XSLT 教程
•
PHP rtrim() 函数
-
PHP参考手册
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
•
算法总结-股票买卖
相关标签/搜索
behaviour
reinforcement
bond
with+this
with...connect
with...as
by...with
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
python的安装和Hello,World编写
2.
重磅解读:K8s Cluster Autoscaler模块及对应华为云插件Deep Dive
3.
鸿蒙学习笔记2(永不断更)
4.
static关键字 和构造代码块
5.
JVM笔记
6.
无法启动 C/C++ 语言服务器。IntelliSense 功能将被禁用。错误: Missing binary at c:\Users\MSI-NB\.vscode\extensions\ms-vsc
7.
【Hive】Hive返回码状态含义
8.
Java树形结构递归(以时间换空间)和非递归(以空间换时间)
9.
数据预处理---缺失值
10.
都要2021年了,现代C++有什么值得我们学习的?
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Bond behaviour of corroded reinforcing steel bars in concrete
2.
Generating Text with Deep Reinforcement Learning
3.
Continuous control with Deep Reinforcement Learning
4.
Playing Atari with Deep Reinforcement Learning
5.
Playing atari with deep reinforcement learning
6.
NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING
7.
Paper Reading:NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING
8.
论文笔记——NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING
9.
NIPS-2013:Playing Atari with Deep Reinforcement Learning
10.
解读continuous control with deep reinforcement learning(DDPG)
>>更多相关文章<<