这里只讲下binder的实现原理,不牵扯到android的java层是如何调用;
涉及到的会有ServiceManager
,led_control_server
和test_client
的代码,这些都是用c写的.其中led_control_server
和test_client
是
仿照bctest.c
写的; 在linux平台下运行binder更容易分析binder机制实现的原理(能够增长大量的log,进行分析);
在Linux运行时.先运行ServiceManager
,再运行led_control_server
最后运行test_client
;java
Binder通讯采用C/S架构,从组件视角来讲,包含Client、Server、ServiceManager以及binder驱动,其中ServiceManager
用于管理系统中的各类服务。linux
本文中的代码运行环境是在imx6ul上跑的,运行的是linux系统,内核版本4.10(非android环境分析);android
文章全部代码已上传git
https://github.com/SourceLink...
涉及到的源码地址:github
frameworks/native/cmds/servicemanager/sevice_manager.c
frameworks/native/cmds/servicemanager/binder.c
frameworks/native/cmds/servicemanager/bctest.c
ServiceManager
至关于binder通讯过程当中的守护进程,自己也是个binder服务、比如一个root管理员同样;
主要功能是查询和注册服务;接下来结合代码从main开始分析下serviceManager的服务过程;cookie
源码中的sevice_manager.c
中主函数中使用了selinux
,为了在我板子的linux环境中运行,把这些代码屏蔽,删减后以下:多线程
int main(int argc, char **argv) { struct binder_state *bs; bs = binder_open(128*1024); ① if (!bs) { ALOGE("failed to open binder driver\n"); return -1; } if (binder_become_context_manager(bs)) { ② ALOGE("cannot become context manager (%s)\n", strerror(errno)); return -1; } svcmgr_handle = BINDER_SERVICE_MANAGER; binder_loop(bs, svcmgr_handler); ③ return 0; }
①: 打开binder驱动(详见2.2.1)
②: 注册为管理员(详见2.2.2)
③: 进入循环,处理消息(详见2.2.3)
从主函数的启动流程就能看出sevice_manager
的工做流程并非特别复杂;
其实client
和server
的启动流程和manager
的启动相似,后面再详细分析;架构
struct binder_state *binder_open(size_t mapsize) { struct binder_state *bs; struct binder_version vers; bs = malloc(sizeof(*bs)); if (!bs) { errno = ENOMEM; return NULL; } bs->fd = open("/dev/binder", O_RDWR); ① if (bs->fd < 0) { fprintf(stderr,"binder: cannot open device (%s)\n", strerror(errno)); goto fail_open; } if ((ioctl(bs->fd, BINDER_VERSION, &vers) == -1) || ② (vers.protocol_version != BINDER_CURRENT_PROTOCOL_VERSION)) { fprintf(stderr, "binder: driver version differs from user space\n"); goto fail_open; } bs->mapsize = mapsize; bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0); ③ if (bs->mapped == MAP_FAILED) { fprintf(stderr,"binder: cannot map device (%s)\n", strerror(errno)); goto fail_map; } return bs; fail_map: close(bs->fd); fail_open: free(bs); return NULL; }
①: 打开binder设备
②: 经过ioctl获取binder版本号
③: mmp内存映射
这里说明下为何binder驱动是用ioctl来操做,是由于ioctl能够同时进行读和写操做;app
int binder_become_context_manager(struct binder_state *bs) { return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0); }
仍是经过ioctl
请求类型BINDER_SET_CONTEXT_MGR
注册成manager;异步
void binder_loop(struct binder_state *bs, binder_handler func) { int res; struct binder_write_read bwr; uint32_t readbuf[32]; bwr.write_size = 0; bwr.write_consumed = 0; bwr.write_buffer = 0; readbuf[0] = BC_ENTER_LOOPER; binder_write(bs, readbuf, sizeof(uint32_t)); ① for (;;) { bwr.read_size = sizeof(readbuf); bwr.read_consumed = 0; bwr.read_buffer = (uintptr_t) readbuf; res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); ② if (res < 0) { ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno)); break; } res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func); ③ if (res == 0) { ALOGE("binder_loop: unexpected reply?!\n"); break; } if (res < 0) { ALOGE("binder_loop: io error %d %s\n", res, strerror(errno)); break; } } }
①: 写入命令BC_ENTER_LOOPER
通知驱动该线程已经进入主循环,能够接收数据;
②: 先读一次数据,由于刚才写过一次;
③: 而后解析读出来的数据(详见2.2.4);
binder_loop函数的主要流程以下:
int binder_parse(struct binder_state *bs, struct binder_io *bio, uintptr_t ptr, size_t size, binder_handler func) { int r = 1; uintptr_t end = ptr + (uintptr_t) size; while (ptr < end) { uint32_t cmd = *(uint32_t *) ptr; ptr += sizeof(uint32_t); #if TRACE fprintf(stderr,"%s:\n", cmd_name(cmd)); #endif switch(cmd) { case BR_NOOP: break; case BR_TRANSACTION_COMPLETE: /* check服务 */ break; case BR_INCREFS: case BR_ACQUIRE: case BR_RELEASE: case BR_DECREFS: #if TRACE fprintf(stderr," %p, %p\n", (void *)ptr, (void *)(ptr + sizeof(void *))); #endif ptr += sizeof(struct binder_ptr_cookie); break; case BR_SPAWN_LOOPER: { /* create new thread */ //if (fork() == 0) { //} pthread_t thread; struct binder_thread_desc btd; btd.bs = bs; btd.func = func; pthread_create(&thread, NULL, binder_thread_routine, &btd); /* in new thread: ioctl(BC_ENTER_LOOPER), enter binder_looper */ break; } case BR_TRANSACTION: { struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr; if ((end - ptr) < sizeof(*txn)) { ALOGE("parse: txn too small!\n"); return -1; } if (func) { unsigned rdata[256/4]; struct binder_io msg; struct binder_io reply; int res; bio_init(&reply, rdata, sizeof(rdata), 4); ① bio_init_from_txn(&msg, txn); res = func(bs, txn, &msg, &reply); ② binder_send_reply(bs, &reply, txn->data.ptr.buffer, res); ③ } ptr += sizeof(*txn); break; } case BR_REPLY: { struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr; if ((end - ptr) < sizeof(*txn)) { ALOGE("parse: reply too small!\n"); return -1; } binder_dump_txn(txn); if (bio) { bio_init_from_txn(bio, txn); bio = 0; } else { /* todo FREE BUFFER */ } ptr += sizeof(*txn); r = 0; break; } case BR_DEAD_BINDER: { struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr; ptr += sizeof(binder_uintptr_t); death->func(bs, death->ptr); break; } case BR_FAILED_REPLY: r = -1; break; case BR_DEAD_REPLY: r = -1; break; default: ALOGE("parse: OOPS %d\n", cmd); return -1; } } return r; }
①: 按照必定的格式初始化rdata数据,请注意这里rdata是在用户空间建立的buf;
②: 调用设置进来的处理函数svcmgr_handler
(详见2.2.5);
③: 发送回复信息;
这个函数咱们只重点关注下BR_TRANSACTION
其余的命令含义能够参考表格A;
int svcmgr_handler(struct binder_state *bs, struct binder_transaction_data *txn, struct binder_io *msg, struct binder_io *reply) { struct svcinfo *si; uint16_t *s; size_t len; uint32_t handle; uint32_t strict_policy; int allow_isolated; //ALOGI("target=%x code=%d pid=%d uid=%d\n", // txn->target.handle, txn->code, txn->sender_pid, txn->sender_euid); if (txn->target.handle != svcmgr_handle) return -1; if (txn->code == PING_TRANSACTION) return 0; // Equivalent to Parcel::enforceInterface(), reading the RPC // header with the strict mode policy mask and the interface name. // Note that we ignore the strict_policy and don't propagate it // further (since we do no outbound RPCs anyway). strict_policy = bio_get_uint32(msg); ① s = bio_get_string16(msg, &len); if (s == NULL) { return -1; } if ((len != (sizeof(svcmgr_id) / 2)) || ② memcmp(svcmgr_id, s, sizeof(svcmgr_id))) { fprintf(stderr,"invalid id %s\n", str8(s, len)); return -1; } switch(txn->code) { ③ case SVC_MGR_GET_SERVICE: case SVC_MGR_CHECK_SERVICE: s = bio_get_string16(msg, &len); if (s == NULL) { return -1; } handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid); ④ if (!handle) break; bio_put_ref(reply, handle); return 0; case SVC_MGR_ADD_SERVICE: s = bio_get_string16(msg, &len); if (s == NULL) { return -1; } handle = bio_get_ref(msg); allow_isolated = bio_get_uint32(msg) ? 1 : 0; if (do_add_service(bs, s, len, handle, txn->sender_euid, ⑤ allow_isolated, txn->sender_pid)) return -1; break; case SVC_MGR_LIST_SERVICES: { uint32_t n = bio_get_uint32(msg); if (!svc_can_list(txn->sender_pid)) { ALOGE("list_service() uid=%d - PERMISSION DENIED\n", txn->sender_euid); return -1; } si = svclist; while ((n-- > 0) && si) ⑥ si = si->next; if (si) { bio_put_string16(reply, si->name); return 0; } return -1; } default: ALOGE("unknown code %d\n", txn->code); return -1; } bio_put_uint32(reply, 0); return 0; }
①: 获取帧头数据,通常为0,由于发送方发送数据时都会在数据最前方填充4个字节0数据(分配数据空间的最小单位4字节);
②: 对比svcmgr_id
是否和咱们原来定义相同#define SVC_MGR_NAME "linux.os.ServiceManager"
(我改写了);
③: 根据code
作对应的事情,就想到与根据编码去执行对应的fun(client请求服务后去执行服务,service也是根据不一样的code来执行。接下来会举例说明);、
④: 从服务名在server链表中查找对应的服务,并返回handle(详见2.2.6);
⑤: 添加服务,通常都是service发起的请求。将handle和服务名添加到服务链表中(这里的handle是由binder驱动分配);
⑥: 查找server_manager中链表中第n
个服务的名字(该数值由查询端决定);
uint32_t do_find_service(struct binder_state *bs, const uint16_t *s, size_t len, uid_t uid, pid_t spid) { struct svcinfo *si; if (!svc_can_find(s, len, spid)) { ① ALOGE("find_service('%s') uid=%d - PERMISSION DENIED\n", str8(s, len), uid); return 0; } si = find_svc(s, len); ② //ALOGI("check_service('%s') handle = %x\n", str8(s, len), si ? si->handle : 0); if (si && si->handle) { if (!si->allow_isolated) { ③ // If this service doesn't allow access from isolated processes, // then check the uid to see if it is isolated. uid_t appid = uid % AID_USER; if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) { return 0; } } return si->handle; ④ } else { return 0; } }
①: 检测调用进程是否有权限请求服务(这里用selinux管理权限,为了让代码能够方便容许,这里面的代码有作删减);
②: 遍历server_manager服务链表;
③: 若是binder服务不容许服务从沙箱中访问,则执行下面检查;
④: 返回查询到handle;
do_find_service
函数主要工做是搜索服务链表,返回查找到的服务
int do_add_service(struct binder_state *bs, const uint16_t *s, size_t len, uint32_t handle, uid_t uid, int allow_isolated, pid_t spid) { struct svcinfo *si; //ALOGI("add_service('%s',%x,%s) uid=%d\n", str8(s, len), handle, // allow_isolated ? "allow_isolated" : "!allow_isolated", uid); if (!handle || (len == 0) || (len > 127)) return -1; if (!svc_can_register(s, len, spid)) { ① ALOGE("add_service('%s',%x) uid=%d - PERMISSION DENIED\n", str8(s, len), handle, uid); return -1; } si = find_svc(s, len); ② if (si) { if (si->handle) { ALOGE("add_service('%s',%x) uid=%d - ALREADY REGISTERED, OVERRIDE\n", str8(s, len), handle, uid); svcinfo_death(bs, si); } si->handle = handle; } else { ③ si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t)); if (!si) { ALOGE("add_service('%s',%x) uid=%d - OUT OF MEMORY\n", str8(s, len), handle, uid); return -1; } si->handle = handle; si->len = len; memcpy(si->name, s, (len + 1) * sizeof(uint16_t)); si->name[len] = '\0'; si->death.func = (void*) svcinfo_death; si->death.ptr = si; si->allow_isolated = allow_isolated; si->next = svclist; svclist = si; } ALOGI("add_service('%s'), handle = %d\n", str8(s, len), handle); binder_acquire(bs, handle); ④ binder_link_to_death(bs, handle, &si->death); ⑤ return 0; }
①: 判断请求进程是否有权限注册服务;
②: 查找ServiceManager的服务链表中是否已经注册了该服务,若是有则通知驱动杀死原先的binder服务,而后更新最新的binder服务;
③: 若是原来没有建立该binder服务,则进行一系列的赋值,再插入到服务链表的表头;
④: 增长binder服务的引用计数;
⑤: 告诉驱动接收服务的死亡通知;
从上面分析,能够知道ServiceManager
的主要工做流程以下:
int main(int argc, char **argv) { int fd; struct binder_state *bs; uint32_t svcmgr = BINDER_SERVICE_MANAGER; uint32_t handle; int ret; struct register_server led_control[3] = { ① [0] = { .code = 1, .fun = led_on } , [1] = { .code = 2, .fun = led_off } }; bs = binder_open(128*1024); ② if (!bs) { ALOGE("failed to open binder driver\n"); return -1; } ret = svcmgr_publish(bs, svcmgr, LED_CONTROL_SERVER_NAME, led_control); ③ if (ret) { ALOGE("failed to publish %s service\n", LED_CONTROL_SERVER_NAME); return -1; } binder_set_maxthreads(bs, 10); ④ binder_loop(bs, led_control_server_handler); ⑤ return 0; }
①:led_control_server
提供的服务函数;
②: 初始化binder组件( 详见2.2);
③: 注册服务,svcmgr
是发送的目标,LED_CONTROL_SERVER_NAME
注册的服务名,led_control
注册的binder实体;
④: 设置建立线程最大数(详见3.5);
⑤: 进入线程循环(详见2.3);
int svcmgr_publish(struct binder_state *bs, uint32_t target, const char *name, void *ptr) { int status; unsigned iodata[512/4]; struct binder_io msg, reply; bio_init(&msg, iodata, sizeof(iodata), 4); ① bio_put_uint32(&msg, 0); // strict mode header bio_put_string16_x(&msg, SVC_MGR_NAME); bio_put_string16_x(&msg, name); bio_put_obj(&msg, ptr); if (binder_call(bs, &msg, &reply, target, SVC_MGR_ADD_SERVICE)) ② return -1; status = bio_get_uint32(&reply); ③ binder_done(bs, &msg, &reply); ④ return status; }
①: 初始化用户空间的数据iodata,设置了四个字节的offs,接着按必定格式往buf里面填充数据;
②: 调用ServiceManager
服务的SVC_MGR_ADD_SERVICE
功能;
③: 获取ServiceManager
回复数据,成功返回0
;
④: 结束注册过程,释放内核中刚才交互分配的buf;
void bio_init(struct binder_io *bio, void *data, size_t maxdata, size_t maxoffs) { size_t n = maxoffs * sizeof(size_t); if (n > maxdata) { bio->flags = BIO_F_OVERFLOW; bio->data_avail = 0; bio->offs_avail = 0; return; } bio->data = bio->data0 = (char *) data + n; ① bio->offs = bio->offs0 = data; ② bio->data_avail = maxdata - n; ③ bio->offs_avail = maxoffs; ④ bio->flags = 0; ⑤ }
①: 根据传进来的参数,留下必定长度的offs数据空间, data指针则从data + n
开始;
②: offs指针则从data
开始,则offs可以使用的数据空间只有n
个字节;
③: 可以使用的data空间计数;
④: 可以使用的offs空间计数;
⑤: 清除buf的flag;
init后此时buf空间的分配状况以下图:
void bio_put_uint32(struct binder_io *bio, uint32_t n) { uint32_t *ptr = bio_alloc(bio, sizeof(n)); if (ptr) *ptr = n; }
这个函数往buf里面填充一个uint32的数据,这个数据的最小单位为4个字节;
前面svcmgr_publish
调用bio_put_uint32(&msg, 0);,实质buf中的数据是00 00 00 00
;
static void *bio_alloc(struct binder_io *bio, size_t size) { size = (size + 3) & (~3); if (size > bio->data_avail) { bio->flags |= BIO_F_OVERFLOW; return NULL; } else { void *ptr = bio->data; bio->data += size; bio->data_avail -= size; return ptr; } }
这个函数分配的数据宽度为4的倍数,先判断当前可以使用的数据宽度是否小于待分配的宽度;
若是小于则置标志BIO_F_OVERFLOW
不然分配数据,并对data
日后偏移size
个字节,可以使用数据宽度data_avail
减去size
个字节;
void bio_put_string16_x(struct binder_io *bio, const char *_str) { unsigned char *str = (unsigned char*) _str; size_t len; uint16_t *ptr; if (!str) { ① bio_put_uint32(bio, 0xffffffff); return; } len = strlen(_str); if (len >= (MAX_BIO_SIZE / sizeof(uint16_t))) { bio_put_uint32(bio, 0xffffffff); return; } /* Note: The payload will carry 32bit size instead of size_t */ bio_put_uint32(bio, len); ② ptr = bio_alloc(bio, (len + 1) * sizeof(uint16_t)); if (!ptr) return; while (*str) ③ *ptr++ = *str++; *ptr++ = 0; }
①: 这里到bio_alloc
前都是为了计算和判断本身串的长度再填充到buf中;
②: 填充字符串前会填充字符串的长度;
③: 填充字符串到buf中,一个字符占两个字节,注意uint16_t *ptr;
;
void bio_put_obj(struct binder_io *bio, void *ptr) { struct flat_binder_object *obj; obj = bio_alloc_obj(bio); ① if (!obj) return; obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; obj->type = BINDER_TYPE_BINDER; ② obj->binder = (uintptr_t)ptr; ③ obj->cookie = 0; }
struct flat_binder_object { /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */ __u32 type; __u32 flags; union { binder_uintptr_t binder; /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */ __u32 handle; }; binder_uintptr_t cookie; };
①: 分配一个flat_binder_object
大小的空间(详见3.2.6);
②: type的类型为BINDER_TYPE_BINDER
时则type传入的是binder实体,通常是服务端注册服务时传入;
type的类型为BINDER_TYPE_HANDLE
时则type传入的为handle,通常由客户端请求服务时;
③:obj->binder
值,跟随type改变;
static struct flat_binder_object *bio_alloc_obj(struct binder_io *bio) { struct flat_binder_object *obj; obj = bio_alloc(bio, sizeof(*obj)); ① if (obj && bio->offs_avail) { bio->offs_avail--; *bio->offs++ = ((char*) obj) - ((char*) bio->data0); ② return obj; } bio->flags |= BIO_F_OVERFLOW; return NULL; }
①: 在data后分配struct flat_binder_object
长度的空间;
②: bio->offs空间记下此时插入obj,相对于data0的偏移值;
看到这终于知道offs是干吗的了,原来是用来记录数据中是否有obj类型的数据;
综上分析,传输一次完整的数据的格式以下:
int binder_call(struct binder_state *bs, struct binder_io *msg, struct binder_io *reply, uint32_t target, uint32_t code) { int res; struct binder_write_read bwr; struct { uint32_t cmd; struct binder_transaction_data txn; } __attribute__((packed)) writebuf; unsigned readbuf[32]; if (msg->flags & BIO_F_OVERFLOW) { fprintf(stderr,"binder: txn buffer overflow\n"); goto fail; } writebuf.cmd = BC_TRANSACTION; // binder call transaction writebuf.txn.target.handle = target; ① writebuf.txn.code = code; ② writebuf.txn.flags = 0; writebuf.txn.data_size = msg->data - msg->data0; ③ writebuf.txn.offsets_size = ((char*) msg->offs) - ((char*) msg->offs0); writebuf.txn.data.ptr.buffer = (uintptr_t)msg->data0; writebuf.txn.data.ptr.offsets = (uintptr_t)msg->offs0; bwr.write_size = sizeof(writebuf); ④ bwr.write_consumed = 0; bwr.write_buffer = (uintptr_t) &writebuf; for (;;) { bwr.read_size = sizeof(readbuf); bwr.read_consumed = 0; bwr.read_buffer = (uintptr_t) readbuf; res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); ⑤ if (res < 0) { fprintf(stderr,"binder: ioctl failed (%s)\n", strerror(errno)); goto fail; } res = binder_parse(bs, reply, (uintptr_t) readbuf, bwr.read_consumed, 0); ⑥ if (res == 0) return 0; if (res < 0) goto fail; } fail: memset(reply, 0, sizeof(*reply)); reply->flags |= BIO_F_IOERROR; return -1; }
①: 这个target就是咱们此次请求服务的目标,即ServiceManager;
②: code是咱们请求服务的功能码,由服务端提供;
③: 把binder_io
数据转化成binder_transaction_data
数据;
④: 驱动进行读写是根据这个size来的,分析驱动的时候再详细分析;
⑤: 进行一次读写;
⑥: 解析发送的后返回的数据,判断是否注册成功;
void binder_done(struct binder_state *bs, struct binder_io *msg, struct binder_io *reply) { struct { uint32_t cmd; uintptr_t buffer; } __attribute__((packed)) data; if (reply->flags & BIO_F_SHARED) { data.cmd = BC_FREE_BUFFER; data.buffer = (uintptr_t) reply->data0; binder_write(bs, &data, sizeof(data)); reply->flags = 0; } }
这个函数比较简单发送BC_FREE_BUFFER
命令给驱动,让驱动释放内核态由刚才交互分配的buf;
void binder_set_maxthreads(struct binder_state *bs, int threads) { ioctl(bs->fd, BINDER_SET_MAX_THREADS, &threads); }
这里主要调用ioctl
函数写入命令BINDER_SET_MAX_THREADS
进行设置最大线程数;
led_control_server主要提供led的控制服务,具体的流程以下:
int main(int argc, char **argv) { struct binder_state *bs; uint32_t svcmgr = BINDER_SERVICE_MANAGER; unsigned int g_led_control_handle; if (argc < 3) { ALOGE("Usage:\n"); ALOGE("%s led <on|off>\n", argv[0]); return -1; } bs = binder_open(128*1024); ① if (!bs) { ALOGE("failed to open binder driver\n"); return -1; } g_led_control_handle = svcmgr_lookup(bs, svcmgr, LED_CONTROL_SERVER_NAME); ② if (!g_led_control_handle) { ALOGE( "failed to get led control service\n"); return -1; } ALOGI("Handle for led control service = %d\n", g_led_control_handle); if (!strcmp(argv[1], "led")) { if (!strcmp(argv[2], "on")) { if (interface_led_on(bs, g_led_control_handle, 2) == 0) { ③ ALOGI("led was on\n"); } } else if (!strcmp(argv[2], "off")) { if (interface_led_off(bs, g_led_control_handle, 2) == 0) { ALOGI("led was off\n"); } } } binder_release(bs, g_led_control_handle); ④ return 0; }
①: 打开binder设备(详见2.2);
②: 根据名字获取led控制服务;
③: 根据获取到的handle,调用led控制服务(详见4.3);
④: 释放服务;
client的流程也很简单,按步骤1.2.3.4读下来就是了;
uint32_t svcmgr_lookup(struct binder_state *bs, uint32_t target, const char *name) { uint32_t handle; unsigned iodata[512/4]; struct binder_io msg, reply; bio_init(&msg, iodata, sizeof(iodata), 4); ① bio_put_uint32(&msg, 0); // strict mode header bio_put_string16_x(&msg, SVC_MGR_NAME); bio_put_string16_x(&msg, name); if (binder_call(bs, &msg, &reply, target, SVC_MGR_GET_SERVICE)) ② return 0; handle = bio_get_ref(&reply); ③ if (handle) binder_acquire(bs, handle); ④ binder_done(bs, &msg, &reply); ⑤ return handle; }
①: 由于是请求服务,因此这里不用添加binder实体数据,具体的参考3.2,这里就不重复解释了;
②: 向target进程(ServiceManager)请求获取led_control服务(详细参考3.3);
③: 从ServiceManager返回的数据buf中获取led_control服务的handle;
④: 增长该handle的引用计数;
⑤: 释放内核空间buf(详3.4);
uint32_t bio_get_ref(struct binder_io *bio) { struct flat_binder_object *obj; obj = _bio_get_obj(bio); ① if (!obj) return 0; if (obj->type == BINDER_TYPE_HANDLE) ② return obj->handle; return 0; }
①: 把bio的数据转化成flat_binder_object格式;
②: 判断binder数据类型是否为引用,是则返回获取到的handle;
static struct flat_binder_object *_bio_get_obj(struct binder_io *bio) { size_t n; size_t off = bio->data - bio->data0; ① /* TODO: be smarter about this? */ for (n = 0; n < bio->offs_avail; n++) { if (bio->offs[n] == off) return bio_get(bio, sizeof(struct flat_binder_object)); ② } bio->data_avail = 0; bio->flags |= BIO_F_OVERFLOW; return NULL; }
①: 通常状况下该值都为0,由于在reply时获取ServiceManager传来的数据,bio->data和bio->data都指向同一个地址;
②: 获取到struct flat_binder_object
数据的头指针;
从ServiceManager传来的数据是struct flat_binder_object
的数据,格式以下:
int interface_led_on(struct binder_state *bs, unsigned int handle, unsigned char led_enum) { unsigned iodata[512/4]; struct binder_io msg, reply; int ret = -1; int exception; bio_init(&msg, iodata, sizeof(iodata), 4); bio_put_uint32(&msg, 0); // strict mode header bio_put_uint32(&msg, led_enum); if (binder_call(bs, &msg, &reply, handle, LED_CONTROL_ON)) return ret; exception = bio_get_uint32(&reply); if (exception == 0) ret = bio_get_uint32(&reply); binder_done(bs, &msg, &reply); return ret; }
这个流程和前面svcmgr_lookup
的请求服务差很少,只是最后是获取led_control_server
的返回值.
注意这里为何获取了两次uint32
类型的数据,这是由于服务方在回复数据的时候添加了头帧,这个是能够调节的,非规则;
void binder_release(struct binder_state *bs, uint32_t target) { uint32_t cmd[2]; cmd[0] = BC_RELEASE; cmd[1] = target; binder_write(bs, cmd, sizeof(cmd)); }
通知驱动层减少对target
进程的引用,结合驱动讲解就更能明白了;
test_client的调用时序以下,过程和led_control_server
的调用过程相识:
BR我的理解是缩写为binder reply
消息 | 含义 | 参数 |
---|---|---|
BR_ERROR | 发生内部错误(如内存分配失败) | --- |
BR_OK BR_NOOP |
操做完成 | --- |
BR_SPAWN_LOOPER | 该消息用于接收方线程池管理。当驱动发现接收方全部 线程都处于忙碌状态且线程池里的线程总数没有超过 BINDER_SET_MAX_THREADS设置的最大线程数时, 向接收方发送该命令要求建立更多线程以备接收数据。 |
--- |
BR_TRANSACTION | 对应发送方的BC_TRANSACTION | binder_transaction_data |
BR_REPLY | 对应发送方BC_REPLY的回复 | binder_transaction_data |
BR_ACQUIRE_RESULT BR_FINISHED |
未使用 | --- |
BR_DEAD_REPLY | 交互时向驱动发送binder调用,若是对方已经死亡,则 驱动回应此命令 |
--- |
BR_TRANSACTION_COMPLETE | 发送方经过BC_TRANSACTION或BC_REPLY发送 完一个数据包后,都能收到该消息作为成功发送的反馈。 这和BR_REPLY不同,是驱动告知发送方已经发送成 功,而不是Server端返回请求数据。因此无论 同步仍是异步交互接收方都能得到本消息。 |
--- |
BR_INCREFS BR_ACQUIRE BR_RELEASE BR_DECREFS |
这一组消息用于管理强/弱指针的引用计数。只有 提供Binder实体的进程才能收到这组消息。 |
binder_uintptr_t binder:Binder实体在用户空间中的指针 binder_uintptr_t cookie:与该实体相关的附加数据 |
BR_DEAD_BINDER |
向得到Binder引用的进程发送Binder实体 死亡通知书;收到死亡通知书的进程接下 来会返回BC_DEAD_BINDER_DONE作确认。 |
--- |
BR_CLEAR_DEATH_NOTIFICATION_DONE | 回应命令BC_REQUEST_DEATH_NOTIFICATION | --- |
BR_FAILED_REPLY | 若是发送非法引用号则返回该消息 | --- |
BC我的理解是缩写为binder call or cmd
消息 | 含义 | 参数 |
---|---|---|
BC_TRANSACTION BC_REPLY |
BC_TRANSACTION用于Client向Server发送请求数据; BC_REPLY用于Server向Client发送回复(应答)数据。 其后面紧接着一个binder_transaction_data结构体代表要写 入的数据。 |
struct binder_transaction_data |
BC_ACQUIRE_RESULT BC_ATTEMPT_ACQUIRE |
未使用 | --- |
BC_FREE_BUFFER | 请求驱动释放调刚在内核空间建立用来保存用户空间数据的内存块 | --- |
BC_INCREFS BC_ACQUIRE BC_RELEASE BC_DECREFS |
这组命令增长或减小Binder的引用计数,用以实现强指针或 弱指针的功能。 |
--- |
BC_INCREFS_DONE BC_ACQUIRE_DONE |
第一次增长Binder实体引用计数时,驱动向Binder 实体所在的进程发送BR_INCREFS, BR_ACQUIRE消息; Binder实体所在的进程处理完毕回馈BC_INCREFS_DONE, BC_ACQUIRE_DONE |
--- |
BC_REGISTER_LOOPER BC_ENTER_LOOPER BC_EXIT_LOOPER |
这组命令同BINDER_SET_MAX_THREADS一道实现Binder驱 动对接收方线程池管理。BC_REGISTER_LOOPER通知驱动线程 池中一个线程已经建立了;BC_ENTER_LOOPER通知驱动该线程 已经进入主循环,能够接收数据;BC_EXIT_LOOPER通知驱动 该线程退出主循环,再也不接收数据。 |
--- |
BC_REQUEST_DEATH_NOTIFICATION | 得到Binder引用的进程经过该命令要求驱动在Binder实体销毁获得 通知。虽然说强指针能够确保只要有引用就不会销毁实体,但这毕竟 是个跨进程的引用,谁也没法保证明体因为所在的Server关闭Binder 驱动或异常退出而消失,引用者能作的是要求Server在此刻给出通知。 |
--- |
BC_DEAD_BINDER_DONE | 收到实体死亡通知书的进程在删除引用后用本命令告知驱动。 | --- |
表格参考博客: