1、前言java
在卫星和高端传感器的数据中。精通《设计模式》和算法,能够帮助您分析并作出更有力和知识渊博的决策,实现导航领域中搜索引擎的强大算法设计。算法
2、后端算法高级框架设计图后端
3、相关设计模式的类名词说明设计模式
一、蒙特卡罗树搜索 - 图形化模拟 Upper Confidence bound applied to Trees(UCT)app
二、 calculation_time来控制时间框架
三、选举(selection)是根据当前得到全部子步骤的统计结果,选择一个最优的子步骤。dom
四、扩展(expansion)在当前得到的统计结果不足以计算出下一个步骤时,随机选择一个子步骤。ide
五、模拟(simulation)模拟决策过程,进入下一步。工具
六、反向传播(Back-Propagation)根据决策的结果,计算对应路径上统计记录的值。搜索引擎
七、置信区间(confidence intervals)是指由样本统计量所构造的整体参zhi数的估计区间,窄的置信区间比宽的置信区间能提供更多的有关整体参数的信息。越小的置信区间置信度就越高。
4、工具类设计
工具类:存在了某一类事物的工具方法的类。
工具类存在的包:工具包 tools 。
工具类起名:表示一类事物。好比:在tools包下的Sampler为取样器工具类。
该Sampler工具方法所有使用static修饰, 只须要使用工具类名调用便可。
5、设计代码逻辑
注释:因为公开,已经去掉中文说明。该类为取样器,进行数据的计算逻辑封装。
package tools; import java.util.ArrayList; import java.util.Calendar; import java.util.List; import java.util.Random; import java.util.Set; import jdk.internal.dynalink.beans.StaticClass; public class Sampler { private static Random rng = new Random( Calendar.getInstance().getTimeInMillis() + Thread.currentThread().getId()); public static Random getRandom() { return rng; } public static boolean sampleCoin() { return rng.nextBoolean(); } public static double sampleBeta(double alpha, double beta) { double x, y; x = sampleGamma(alpha, 1); y = sampleGamma(beta, 1); return x / (x + y); } // Sample from the 1 - X where X ~ beta( alpha , beta) public static double one_minus_sampleBeta(double alpha, double beta) { double x, y; x = sampleGamma(alpha, 1); y = sampleGamma(beta, 1); return y / (x + y); } public static long nextPoisson(double lambda) { return (long) (-1.0 * Math.log(1.0 - rng.nextDouble() * 1.0) / lambda); } public static double nextExponential(double b) { double randx; double result; randx = rng.nextDouble(); result = -1 * b * Math.log(randx); return result; } public static double sampleGamma(double k, double theta) { boolean accept = false; if (k < 1) { // Weibull algorithm double c = (1 / k); double d = ((1 - k) * Math.pow(k, (k / (1 - k)))); double u, v, z, e, x; do { u = rng.nextDouble(); v = rng.nextDouble(); z = -Math.log(u); e = -Math.log(v); x = Math.pow(z, c); if ((z + e) >= (d + x)) { accept = true; } } while (!accept); return (x * theta); } else { // Cheng's algorithm double b = (k - Math.log(4)); double c = (k + Math.sqrt(2 * k - 1)); double lam = Math.sqrt(2 * k - 1); double cheng = (1 + Math.log(4.5)); double u, v, x, y, z, r; do { u = rng.nextDouble(); v = rng.nextDouble(); y = ((1 / lam) * Math.log(v / (1 - v))); x = (k * Math.exp(y)); z = (u * v * v); r = (b + (c * y) - x); if ((r >= ((4.5 * z) - cheng)) || (r >= Math.log(z))) { accept = true; } } while (!accept); return (x * theta); } } public static Double[] subSampleNaive(List<Double> samples, int m) { int n = samples.size(); int nm = Math.min(m, n); Double[] sub = new Double[nm]; if (nm == n) { sub = samples.toArray(sub); return sub; } for (int k = 0; k < nm; k++) { int i = rng.nextInt(n); Double aux = samples.get(k); samples.set(k, samples.get(i)); samples.set(i, aux); } sub = samples.subList(0, nm).toArray(sub); return sub; } public static Double[] subSample(List<Double> samples, int m) { //System.out.println(samples.size() +" " + m); int n = samples.size(); int nm = Math.min(m, n); Double[] sub = new Double[nm]; if (nm == n) { sub = samples.toArray(sub); return sub; } if (m < n / 2) { for (int k = 0; k < nm; k++) { int i = rng.nextInt(n); Double aux = samples.get(0); samples.set(0, samples.get(i)); samples.set(i, aux); } sub = samples.subList(0, nm).toArray(sub); } else { for (int k = 0; k < n - nm; k++) { int i = rng.nextInt(n); Double aux = samples.get(0); samples.set(0, samples.get(i)); samples.set(i, aux); } sub = samples.subList(n - nm, n).toArray(sub); } return sub; } }