链表:如何实现LRU缓存淘汰算法

链表:如何实现LRU缓存淘汰算法

缓存

缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非常广泛的应用,比如常见的 CPU 缓存、数据库缓存、浏览器缓存等等。

缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定。常见的策略有三种:先进先出策略 FIFO(First In,First Out)、最少使用策略 LFU(Least Frequently Used)、最近最少使用策略 LRU(Least Recently Used)。

缓存实际上就是利用了空间换时间的设计思想。如果我们把数据存储在硬盘上,会比较节省内存,但每次查找数据都要询问一次硬盘,会比较慢。但如果我们通过缓存技术,事先将数据加载在内存中,虽然会比较耗费内存空间,但是每次数据查询的速度就大大提高了。

CPU 缓存机制

CPU在从内存读取数据的时候,会先把读取到的数据加载到CPU的缓存中。而CPU每次从内存读取数据并不是只读取那个特定要访问的地址,而是读取一个数据块,并保存到CPU缓存中,然后下次访问内存数据的时候就会先从CPU缓存开始查找,如果找到就不需要再从内存中取。这样就实现了比内存访问速度更快的机制,也就是CPU缓存存在的意义:为了弥补内存访问速度过慢与CPU执行速度快之间的差异而引入。

数组 VS 链表

数组和链表是两种截然不同的内存组织方式。正是因为内存存储的区别,它们插入、删除、随机访问操作的时间复杂度正好相反。
在这里插入图片描述
不过,数组和链表的对比,并不能局限于时间复杂度。而且,在实际的软件开发中,不能仅仅利用复杂度分析就决定使用哪个数据结构来存储数据。

数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问效率更高。而链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。

对于数组来说,存储空间是连续的,所以在加载某个下标的时候可以把以后的几个下标元素也加载到CPU缓存这样执行速度会快于存储空间不连续的链表存储。

数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。链表本身没有大小的限制,天然地支持动态扩容,我觉得这也是它与数组最大的区别。

注意,Java 中的 ArrayList 容器,也可以支持动态扩容。但是,实际上当我们往支持动态扩容的数组中插入一个数据时,如果数组中没有空闲空间了,就会申请一个更大的空间,将数据拷贝过去,而数据拷贝的操作是非常耗时的。

除此之外,如果你的代码对内存的使用非常苛刻,那数组就更适合你。因为链表中的每个结点都需要消耗额外的存储空间去存储一份指向下一个结点的指针,所以内存消耗会翻倍。而且,对链表进行频繁的插入、删除操作,还会导致频繁的内存申请和释放,容易造成内存碎片,如果是 Java 语言,就有可能会导致频繁的 GC(Garbage Collection,垃圾回收)。

总之,数组和链表各有优劣,在实际开发中,针对不同类型的项目,要根据具体情况,权衡究竟是数组还是链表。

如何基于链表实现 LRU 缓存淘汰算法

思路是这样的:我们维护一个有序单链表,越靠近链表尾部的结点是越早之前访问的。当有一个新的数据被访问时,我们从链表头开始顺序遍历链表。

  1. 如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。
  2. 如果此数据没有在缓存链表中,又可以分为两种情况:
    情况1:如果此时缓存未满,则将此数据结点直接插入到链表的头部;
    情况2:如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。

现在我们来看下缓存访问的时间复杂度是多少。因为不管缓存有没有满,我们都需要遍历一遍链表,所以这种基于链表的实现思路,缓存访问的时间复杂度为 O(n)。

实际上,我们可以继续优化这个实现思路,比如引入散列表(Hash table)来记录每个数据的位置,将缓存访问的时间复杂度降到 O(1)。