04 | 链表(上):如何实现LRU缓存淘汰算法?

今天咱们来聊聊“链表(Linked list)”这个数据结构。学习链表有什么用呢?为了回答这个问题,咱们先来讨论一个经典的链表应用场景,那就是+LRU+缓存淘汰算法。算法

 

缓存是一种提升数据读取性能的技术,在硬件设计、软件开发中都有着很是普遍的应用,好比常见的+CPU+缓存、数据库缓存、浏览器缓存等等。数据库

 

缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就须要缓存淘汰策略来决定。常见的策略有三种:先进先出策略 FIFO(First In,First Out)、最少使用策略 LFU(Least Frequently Used)、最近最少使用策略 LRU(Least Recently Used)。数组

 

这些策略你不用死记,我打个比方你很容易就明白了。假如说,你买了不少本技术书,但有一天你发现,这些书太多了,太占书房空间了,你要作个大扫除,扔掉一些书籍。那这个时候,你会选择扔掉哪些书呢?对应一下,你的选择标准是否是和上面的三种策略神似呢? 好了,回到正题,咱们今天的开篇问题就是:如何用链表来实现 LRU 缓存淘汰策略呢?浏览器

 

带着这个问题,咱们开始今天的内容吧!缓存

 

五花八门的链表结构

 

相比数组,链表是一种稍微复杂一点的数据结构。对于初学者来讲,掌握起来也要比数组稍难一些。这两个很是基础、很是经常使用的数据结构,咱们经常将会放到一起来比较。因此咱们先来看,这二者有什么区别。数据结构

 

咱们先从底层的存储结构上来看一看数据结构和算法

 

为了直观地对比,我画了一张图。从图中咱们看到,数组须要一块连续的内存空间来存储,对内存的要求比较高。若是咱们申请一个+100MB+大小的数组,当内存中没有连续的、足够大的存储空间时,即使内存的剩余总可用空间大于+100MB,仍然会申请失败。+而链表偏偏相反,它并不须要一块连续的内存空间,它经过“指针”将一组零散的内存块串联起来使用,因此若是咱们申请的是+100MB+大小的链表,根本不会有问题。性能

 

 

链表结构五花八门,今天我重点给你介绍三种最多见的链表结构,它们分别是:单链表、双向链表和循环链表。咱们首先来看最简单、最经常使用的单链表。学习

 

咱们刚刚讲到,链表经过指针将一组零散的内存块串联在一块儿。其中,咱们把内存块称为链表的“结点”。为了将全部的结点串起来,每一个链表的结点除了存储数据以外,还须要记录链上的下一个结点的地址。如图所示,咱们把这个记录下个结点地址的指针叫做后继指针+next。优化

 

 

从我画的单链表图中,你应该能够发现,其中有两个结点是比较特殊的,它们分别是第一个结点和最后一个结点。咱们习惯性地把第一个结点叫做头结点,把最后一个结点叫做尾结点。其中,头结点用来记录链表的基地址。有了它,咱们就能够遍历获得整条链表。而尾结点特殊的地方是:指针不是指向下一个结点,而是指向一个空地址 NULL,表示这是链表上最后一个结点。

 

与数组同样,链表也支持数据的查找、插入和删除操做。

 

咱们知道,在进行数组的插入、删除操做时,为了保持内存数据的连续性,须要作大量的数据搬移,因此时间复杂度是 O(n)。而在链表中插入或者删除一个数据,咱们并不须要为了保持内存的连续性而搬移结点,由于链表的存储空间自己就不是连续的。因此,在链表中插入和删除一个数据是很是快速的。

 

为了方便你理解,我画了一张图,从图中咱们能够看出,针对链表的插入和删除操做,咱们只须要考虑相邻结点的指针改变,因此对应的时间复杂度是 O(1)。

 

 

 

可是,有利就有弊。链表要想随机访问第 k 个元素,就没有数组那么高效了。由于链表中的数据并不是连续存储的,因此没法像数组那样,根据首地址和下标,经过寻址公式就能直接计算出对应的内存地址,而是须要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。

 

你能够把链表想象成一个队伍,队伍中的每一个人都只知道本身后面的人是谁,因此当咱们但愿知道排在第 k 位的人是谁的时候,咱们就须要从第一我的开始,一个一个地往下数。因此,链表随机访问的性能没有数组好,须要 O(n) 的时间复杂度。

 

好了,单链表咱们就简单介绍完了,接着来看另外两个复杂的升级版,循环链表和双向链表。+循环链表是一种特殊的单链表。实际上,循环链表也很简单。它跟单链表惟一的区别就在尾结点。咱们知道,单链表的尾结点指针指向空地址,表示这就是最后的结点了。而循环链表的尾结点指针是指向链表的头结点。从我画的循环链表图中,你应该能够看出来,它像一个环同样首尾相连,因此叫做“循环”链表。

 

 

 

和单链表相比,循环链表的优势是从链尾到链头比较方便。当要处理的数据具备环型结构特色时,就特别适合采用循环链表。好比著名的约瑟夫问题。尽管用单链表也能够实现,可是用循环链表实现的话,代码就会简洁不少。

 

单链表和循环链表是否是都不难?接下来咱们再来看一个稍微复杂的,在实际的软件开发中,也更加经常使用的链表结构:双向链表。

 

单向链表只有一个方向,结点只有一个后继指针 next 指向后面的结点。而双向链表,顾名思义,它支持两个方向,每一个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针 prev 指向前面的结点。

 

 

 

从我画的图中能够看出来,双向链表须要额外的两个空间来存储后继结点和前驱结点的地址。因此,若是存储一样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但能够支持双向遍历,这样也带来了双向链表操做的灵活性。那相比单链表,双向链表适合解决哪一种问题呢?

 

从结构上来看,双向链表能够支持 O(1) 时间复杂度的状况下找到前驱结点,正是这样的特色,也使双向链表在某些状况下的插入、删除等操做都要比单链表简单、高效。

 

你可能会说,我刚讲到单链表的插入、删除操做的时间复杂度已是 O(1) 了,双向链表还能再怎么高效呢?别着急,刚刚的分析比较偏理论,不少数据结构和算法书籍中都会这么讲,可是这种说法其实是不许确的,或者说是有先决条件的。我再来带你分析一下链表的两个操做。

 

咱们先来看删除操做

 

在实际的软件开发中,从链表中删除一个数据无外乎这两种状况:

  删除结点中“值等于某个给定值”的结点;

  删除给定指针指向的结点。

 

对于第一种状况,无论是单链表仍是双向链表,为了查找到值等于给定值的结点,都须要从头结点开始一个一个依次遍历对比,直到找到值等于给定值的结点,而后再经过我前面讲的指针操做将其删除。

 

尽管单纯的删除操做时间复杂度是 O(1),但遍历查找的时间是主要的耗时点,对应的时间复杂度为 O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操做的总时间复杂度为 O(n)。

 

对于第二种状况,咱们已经找到了要删除的结点,可是删除某个结点 q 须要知道其前驱结点,而单链表并不支持直接获取前驱结点,因此,为了找到前驱结点,咱们仍是要从头结点开始遍历链表,直到 p->==q,说明 p 是 q 的前驱结点。

 

可是对于双向链表来讲,这种状况就比较有优点了。由于双向链表中的结点已经保存了前驱结点的指针,不须要像单链表那样遍历。因此,针对第二种状况,单链表删除操做须要 O(n) 的时间复杂度,而双向链表只须要在 O(1) 的时间复杂度内就搞定了!

 

同理,若是咱们但愿在链表的某个指定结点前面插入一个结点,双向链表比单链表有很大的优点。双向链表能够在 O(1) 时间复杂度搞定,而单向链表须要 O(n) 的时间复杂度。你能够参照我刚刚讲过的删除操做本身分析一下。

 

除了插入、删除操做有优点以外,对于一个有序链表,双向链表的按值查询的效率也要比单链表高一些。由于,咱们能够记录上次查找的位置 p,每次查询时,根据要查找的值与 p 的大小关系,决定是往前仍是日后查找,因此平均只须要查找一半的数据。

 

如今,你有没有以为双向链表要比单链表更加高效呢?这就是为何在实际的软件开发中,双向链表尽管比较费内存,但仍是比单链表的应用更加普遍的缘由。若是你熟悉 Java 语言,你确定用过 LinkedHashMap 这个容器。若是你深刻研究

 

LinkedHashMap 的实现原理,就会发现其中就用到了双向链表这种数据结构。

 

实际上,这里有一个更加剧要的知识点须要你掌握,那就是用空间换时间的设计思想。当内存空间充足的时候,若是咱们更加追求代码的执行速度,咱们就能够选择空间复杂度相对较高、但时间复杂度相对很低的算法或者数据结构。相反,若是内存比较紧缺,好比代码跑在手机或者单片机上,这个时候,就要反过来用时间换空间的设计思路。

 

仍是开篇缓存的例子。缓存实际上就是利用了空间换时间的设计思想。若是咱们把数据存储在硬盘上,会比较节省内存,但每次查找数据都要询问一次硬盘,会比较慢。但若是咱们经过缓存技术,事先将数据加载在内存中,虽然会比较耗费内存空间,可是每次数据查询的速度就大大提升了。

 

因此我总结一下,对于执行较慢的程序,能够经过消耗更多的内存(空间换时间)来进行优化;而消耗过多内存的程序,能够经过消耗更多的时间(时间换空间)来下降内存的消耗。你还能想到其余时间换空间或者空间换时间的例子吗?

 

了解了循环链表和双向链表,若是把这两种链表整合在一块儿就是一个新的版本:双向循环链表。我想不用我多讲,你应该知道双向循环链表长什么样子了吧?你能够本身试着在纸上画一画。

 

 

链表 VS 数组性能大比拼

 

经过前面内容的学习,你应该已经知道,数组和链表是两种大相径庭的内存组织方式。正是由于内存存储的区别,它们插入、删除、随机访问操做的时间复杂度正好相反。

 

 

不过,数组和链表的对比,并不能局限于时间复杂度。并且,在实际的软件开发中,不能仅仅利用复杂度分析就决定使用哪一个数据结构来存储数据。

 

数组简单易用,在实现上使用的是连续的内存空间,能够借助 CPU 的缓存机制,预读数组中的数据,因此访问效率更高。而链表在内存中并非连续存储,因此对 CPU 缓存不友好,没办法有效预读。

 

数组的缺点是大小固定,一经声明就要占用整块连续内存空间。若是声明的数组过大,系统可能没有足够的连续内存空间分配给它,致使“内存不足(out of memory)”。若是声明的数组太小,则可能出现不够用的状况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,很是费时。链表自己没有大小的限制,自然地支持动态扩容,我以为这也是它与数组最大的区别。

 

你可能会说,咱们 Java 中的 ArrayList 容器,也能够支持动态扩容啊?咱们上一节课讲过,当咱们往支持动态扩容的数组中插入一个数据时,若是数组中没有空闲空间了,就会申请一个更大的空间,将数据拷贝过去,而数据拷贝的操做是很是耗时的。

 

我举一个稍微极端的例子。若是咱们用 ArrayList 存储了了 1GB 大小的数据,这个时候已经没有空闲空间了,当咱们再插入数据的时候,ArrayList 会申请一个 1.5GB 大小的存储空间,而且把原来那 1GB 的数据拷贝到新申请的空间上。听起来是否是就很耗时?

 

除此以外,若是你的代码对内存的使用很是苛刻,那数组就更适合你。由于链表中的每一个结点都须要消耗额外的存储空间去存储一份指向下一个结点的指针,因此内存消耗会翻倍。并且,对链表进行频繁的插入、删除操做,还会致使频繁的内存申请和释放,容易形成内存碎片,若是是 Java 语言,就有可能会致使频繁的 GC(Garbage Collection,垃圾回收)。

 

因此,在咱们实际的开发中,针对不一样类型的项目,要根据具体状况,权衡到底是选择数组仍是链表。

 

解答开篇

 

好了,关于链表的知识咱们就讲完了。咱们如今回过头来看下开篇留给你的思考题。如何基于链表实现+LRU+缓存淘汰算法?+个人思路是这样的:咱们维护一个有序单链表,越靠近链表尾部的结点是越早以前访问的。当有一个新的数据被访问时,咱们从链表头开始顺序遍历链表。

 

1. 若是此数据以前已经被缓存在链表中了,咱们遍历获得这个数据对应的结点,并将其从原来的位置删除,而后再插入到链表的头部。

 

2. 若是此数据没有在缓存链表中,又能够分为两种状况:

  若是此时缓存未满,则将此结点直接插入到链表的头部;

  若是此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。+这样咱们就用链表实现了一个+LRU+缓存,是否是很简单?

 

如今咱们来看下 m 缓存访问的时间复杂度是多少。由于无论缓存有没有满,咱们都须要遍历一遍链表,因此这种基于链表的实现思路,缓存访问的时间复杂度为 O(n)。

 

实际上,咱们能够继续优化这个实现思路,好比引入散列表(Hash table)来记录每一个数据的位置,将缓存访问的时间复杂度降到 O(1)。由于要涉及咱们尚未讲到的数据结构,因此这个优化方案,我如今就不详细说了,等讲到散列表的时候,我会再拿出来说。

 

除了基于链表的实现思路,实际上还能够用数组来实现 LRU 缓存淘汰策略。如何利用数组实现 LRU 缓存淘汰策略呢?我把这个问题留给你思考。

 

内容小结

 

今天咱们讲了一种跟数组“相反”的数据结构,链表。它跟数组同样,也是很是基础、很是经常使用的数据结构。不过链表要比数组稍微复杂,从普通的单链表衍生出来好几种链表结构,好比双向链表、循环链表、双向循环链表。

 

和数组相比,链表更适合插入、删除操做频繁的场景,查询的时间复杂度较高。不过,在具体软件开发中,要对数组和链表的各类性能进行对比,综合来选择使用二者中的哪个。

 

课后思考

 

如何判断一个字符串是不是回文字符串的问题,我想你应该听过,咱们今天的思题目就是基于这个问题的改造版本。若是字符串是经过单链表来存储的,那该如何来判断是是一个回文串呢?你有什么好的解决思路呢?相应的时间空间复杂度又是多少呢?

相关文章
相关标签/搜索