BAT面试算法进阶(3)- 无重复字符的最长子串(滑动窗口法)

BAT面试算法进阶(2)- 无重复字符的最长子串java

BAT面试算法进阶(1)--两数之和面试

上篇文章分享的是暴力解决方法.暴力法很是简单,可是它的速度不够快!那么咱们该如何去作优化了?算法

一.算法题

  • 题目

Given a string, find the length of the longest substring without repeating characters.swift

  • Example
  • Given "abcabcbb", the answer is "abc", which the length is 3.
  • Given "bbbbb", the answer is "b", with the length of 1.
  • Given "pwwkew", the answer is "wke", with the length of
  • Note that the answer must be a substring, "pwke" is a subsequence and not a substring.

二.算法题解读

  • 题目大意:给定一个字符串,找出不含有重复字符的最长子串的长度数组

  • 解读Examplebash

  • 给定"abcabcbb",没有重复字符的最长子串是"abc",那么长度就是3
  • 给定"bbbbb",最长子串就是"b",长度就是1
  • 给定pwwkew,最长子串就是"wke",长度为3,
  • ==注意,==必须是一个子串."pwke",是子序列,而不是子串

三."滑动窗口法"优化解决

使用暴力法解决是很是简单,可是在暴力法中咱们会反复检查一个子字符串是否含有重复的字符.但其实没有这个必要.数据结构

3.1前导关键词介绍

  • HashSet HashSetJava中实现Set接口.由哈希表支持.它不保证Set的迭代顺序,可是它利用Hash的原理来确保元素的惟一性.在HashSet中,元素都存到HashMap键值对的key上面.而Value时有一个统一的Hash值.post

  • HashSet的插入 当有新的值加入时,底层的HashMap会判断Key值是否存在,若是不存在则插入新值.同时这个插入的细节会按照HashMap插入细节.若是存在则不插入.优化

  • **滑动窗口:**是指的是数组/字符串问题的经常使用抽象概念.窗口一般在数组/字符串中由开始和结束的索引定义的一系列元素的集合.便可[i,j)(左闭,右开).而滑动窗口是能够将2个边界向某一个方向"滑动"的窗口.例如,咱们将[i,j)向右滑动1个元素,则它将变成[i+1,j+1)(左闭,右开);ui

3.2 思路

若是从索引i到j-1之间的子字符串S[ij]已经被检查为没有重复字符.那则只须要检查s[j]对应的字符是否存在于子字符串s[ij];

因为在C语言中是没有集合这一个概念的.因此咱们使用java来实现.咱们能够经过HashSet做为活动窗口.那咱们只须要用O(1)的时间来完成对字符是否在当前子字符串的检查.

咱们使用HashSet将字符存储在当前窗口[i,j),最初i=j .而后咱们向右侧滑动索引j,若是它不在HashSet中,则咱们会继续滑动j.直到s[j]已经存在于HashSet中,此时,咱们就已经找到的没有重复字符的最长子串将会以索引i开头.若是咱们将全部的i,都作如此操做便可获得结果.

3.3 实现

Java Code

public class Solution {
    public int lengthOfLongestSubstring(String s) {
        int n = s.length();
        Set<Character> set = new HashSet<>();
        int ans = 0, i = 0, j = 0;
        while (i < n && j < n) {
            //试图调整[i,j]的范围
            if (!set.contains(s.charAt(j))){
                set.add(s.charAt(j++));
                ans = Math.max(ans, j - i);
            }
            else {
                set.remove(s.charAt(i++));
            }
        }
        return ans;
    }
}

复制代码

3.4 复杂度分析

  • 时间复杂度: o(2n) = o(n);在最糟糕的状况下,每一个字符顶多被i,j访问2次.
  • 空间复杂度: o(min(m,n)).窗口滑动法须要O(K)的空间,K指的是集合大小.而集合的大小取决于字符串n的大小以及字符串集的大小.

小编给你们推荐一个iOS技术交流群:551346706!群内提供数据结构与算法、底层进阶、swift、逆向、底层面试题整合文档等免费资料!

相关文章
相关标签/搜索