使用笔记:TF辅助工具--tensorflow slim(TF-Slim)

  若是抛开Keras,TensorLayer,tfLearn,tensroflow 可否写出简介的代码? 能够!slim这个模块是在16年新推出的,其主要目的是来作所谓的“代码瘦身”java

一.简介

  slim被放在tensorflow.contrib这个库下面,导入的方法以下:网络

  import tensorflow.contrib.slim as slimapp

  众所周知 tensorflow.contrib这个库,tensorflow官方对它的描述是:此目录中的任何代码未经官方支持,可能会随时更改或删除。每一个目录下都有指定的全部者。它旨在包含额外功能和贡献,最终会合并到核心TensorFlow中,但其接口可能仍然会发生变化,或者须要进行一些测试,看是否能够得到更普遍的接受。因此slim依然不属于原生tensorflow。ide

  slim是一个使构建,训练,评估神经网络变得简单的库。它能够消除原生tensorflow里面不少重复的模板性的代码,让代码更紧凑,更具有可读性。另外slim提供了不少计算机视觉方面的著名模型(VGG, AlexNet等),咱们不只能够直接使用,甚至能以各类方式进行扩展。函数

 

  slim的子模块及功能介绍:测试

  arg_scope: provides a new scope named arg_scope that allows a user to define default arguments for specific operations within that scope.优化

  除了基本的namescope,variabelscope外,又加了argscope,它是用来控制每一层的默认超参数的。(后面会详细说)ui

  data: contains TF-slim's dataset definition, data providers, parallel_reader, and decoding utilities.lua

  貌似slim里面还有一套本身的数据定义,这个跳过,咱们用的很少。spa

  evaluation: contains routines for evaluating models.

  评估模型的一些方法,用的也很少

  layers: contains high level layers for building models using tensorflow.

  这个比较重要,slim的核心和精髓,一些复杂层的定义

  learning: contains routines for training models.

  一些训练规则

  losses: contains commonly used loss functions.

  一些loss

  metrics: contains popular evaluation metrics.

  评估模型的度量标准

  nets: contains popular network definitions such as VGG and AlexNet models.

  包含一些经典网络,VGG等,用的也比较多

  queues: provides a context manager for easily and safely starting and closing QueueRunners.

  文本队列管理,比较有用。

  regularizers: contains weight regularizers.

  包含一些正则规则

  variables: provides convenience wrappers for variable creation and manipulation.

  slim管理变量的机制

二.slim定义模型

slim中定义一个变量的示例:

  # Model Variables

weights = slim.model_variable( 'weights' ,
                               shape=[ 10 , 10 , 3 , 3 ],
                               initializer=tf.truncated_normal_initializer(stddev= 0.1 ),
                               regularizer=slim.l2_regularizer( 0.05 ),
                               device= '/CPU:0' )
model_variables = slim.get_model_variables()
 
# Regular variables
my_var = slim.variable( 'my_var' ,
                        shape=[ 20 , 1 ],
                        initializer=tf.zeros_initializer())
regular_variables_and_model_variables = slim.get_variables()
 
  如上,变量分为两类:模型变量和局部变量。局部变量是不做为模型参数保存的,而模型变量会再save的时候保存下来。这个玩过tensorflow的人都会明白,诸如global_step之类的就是局部变量。slim中能够写明变量存放的设备,正则和初始化规则。还有获取变量的函数也须要注意一下,get_variables是返回全部的变量。

  slim中实现一个层:

  首先让咱们看看tensorflow怎么实现一个层,例如卷积层:

input = ...

with tf.name_scope( 'conv1_1' ) as scope:
kernel = tf.Variable(tf.truncated_normal([ 3 , 3 , 64 , 128 ], dtype=tf.float32,
                                            stddev=1e- 1 ), name= 'weights'
conv = tf.nn.conv2d(input, kernel, [ 1 , 1 , 1 , 1 ], padding= 'SAME' )
biases = tf.Variable(tf.constant( 0.0 , shape=[ 128 ], dtype=tf.float32),
                        trainable=True, name= 'biases' )
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
而后slim的实现:
input = ...
net = slim.conv2d(input, 128 , [ 3 , 3 ], scope= 'conv1_1' )
但这个不是重要的,由于tenorflow目前也有大部分层的简单实现,这里比较吸引人的是slim中的repeat和stack操做:
net = ...
net = slim.conv2d(net, 256 , [ 3 , 3 ], scope= 'conv3_1' )
net = slim.conv2d(net, 256 , [ 3 , 3 ], scope= 'conv3_2' )
net = slim.conv2d(net, 256 , [ 3 , 3 ], scope= 'conv3_3' )
net = slim.max_pool2d(net, [ 2 , 2 ], scope= 'pool2' )
 
在slim中的repeat操做能够减小代码量:
net = slim.repeat(net, 3 , slim.conv2d, 256 , [ 3 , 3 ], scope= 'conv3' )
net = slim.max_pool2d(net, [ 2 , 2 ], scope= 'pool2' )
 
而stack是处理卷积核或者输出不同的状况:

 

假设定义三层FC:

# Verbose way:

x = slim.fully_connected(x, 32 , scope= 'fc/fc_1' )
x = slim.fully_connected(x, 64 , scope= 'fc/fc_2' )
x = slim.fully_connected(x, 128 , scope= 'fc/fc_3' )
使用stack操做:
slim.stack(x, slim.fully_connected, [ 32 , 64 , 128 ], scope= 'fc' )
同理卷积层也同样:
# 普通方法:
x = slim.conv2d(x, 32 , [ 3 , 3 ], scope= 'core/core_1' )
x = slim.conv2d(x, 32 , [ 1 , 1 ], scope= 'core/core_2' )
x = slim.conv2d(x, 64 , [ 3 , 3 ], scope= 'core/core_3' )
x = slim.conv2d(x, 64 , [ 1 , 1 ], scope= 'core/core_4' )
 
# 简便方法:
slim.stack(x, slim.conv2d, [( 32 , [ 3 , 3 ]), ( 32 , [ 1 , 1 ]), ( 64 , [ 3 , 3 ]), ( 64 , [ 1 , 1 ])], scope= 'core' )

slim中的argscope:

若是你的网络有大量相同的参数,以下:

net = slim.conv2d(inputs, 64, [11, 11], 4, padding='SAME',

                   weights_initializer=tf.truncated_normal_initializer(stddev= 0.01 ),
                   weights_regularizer=slim.l2_regularizer( 0.0005 ), scope= 'conv1' )
net = slim.conv2d(net, 128 , [ 11 , 11 ], padding= 'VALID' ,
                   weights_initializer=tf.truncated_normal_initializer(stddev= 0.01 ),
                   weights_regularizer=slim.l2_regularizer( 0.0005 ), scope= 'conv2' )
net = slim.conv2d(net, 256 , [ 11 , 11 ], padding= 'SAME' ,
                   weights_initializer=tf.truncated_normal_initializer(stddev= 0.01 ),
                   weights_regularizer=slim.l2_regularizer( 0.0005 ), scope= 'conv3' )
 
而后咱们用arg_scope处理一下:
with slim.arg_scope([slim.conv2d], padding= 'SAME' ,
                       weights_initializer=tf.truncated_normal_initializer(stddev= 0.01 )
                       weights_regularizer=slim.l2_regularizer( 0.0005 )):
net = slim.conv2d(inputs, 64 , [ 11 , 11 ], scope= 'conv1' )
net = slim.conv2d(net, 128 , [ 11 , 11 ], padding= 'VALID' , scope= 'conv2' )
net = slim.conv2d(net, 256 , [ 11 , 11 ], scope= 'conv3' )
这里额外说明一点,arg_scope的做用范围内,是定义了指定层的默认参数,若想特别指定某些层的参数,能够从新赋值(至关于重写),如上倒数第二行代码。
那若是除了卷积层还有其余层呢?那就要以下定义:
with slim.arg_scope([slim.conv2d, slim.fully_connected],
                       activation_fn=tf.nn.relu,
                       weights_initializer=tf.truncated_normal_initializer(stddev= 0.01 ),
                       weights_regularizer=slim.l2_regularizer( 0.0005 )):
   with slim.arg_scope([slim.conv2d], stride= 1 , padding= 'SAME' ):
     net = slim.conv2d(inputs, 64 , [ 11 , 11 ], 4 , padding= 'VALID' , scope= 'conv1' )
     net = slim.conv2d(net, 256 , [ 5 , 5 ],
                           weights_initializer=tf.truncated_normal_initializer(stddev= 0.03 ),
                           scope= 'conv2' )
     net = slim.fully_connected(net, 1000 , activation_fn=None, scope= 'fc' )

 

VGG:

def vgg16(inputs):
   with slim.arg_scope([slim.conv2d, slim.fully_connected],
                       activation_fn=tf.nn.relu,
                       weights_initializer=tf.truncated_normal_initializer( 0.0 , 0.01 ),
                       weights_regularizer=slim.l2_regularizer( 0.0005 )):
     net = slim.repeat(inputs, 2 , slim.conv2d, 64 , [ 3 , 3 ], scope= 'conv1' )
     net = slim.max_pool2d(net, [ 2 , 2 ], scope= 'pool1' )
     net = slim.repeat(net, 2 , slim.conv2d, 128 , [ 3 , 3 ], scope= 'conv2' )
     net = slim.max_pool2d(net, [ 2 , 2 ], scope= 'pool2' )
     net = slim.repeat(net, 3 , slim.conv2d, 256 , [ 3 , 3 ], scope= 'conv3' )
     net = slim.max_pool2d(net, [ 2 , 2 ], scope= 'pool3' )
     net = slim.repeat(net, 3 , slim.conv2d, 512 , [ 3 , 3 ], scope= 'conv4' )
     net = slim.max_pool2d(net, [ 2 , 2 ], scope= 'pool4' )
     net = slim.repeat(net, 3 , slim.conv2d, 512 , [ 3 , 3 ], scope= 'conv5' )
     net = slim.max_pool2d(net, [ 2 , 2 ], scope= 'pool5' )
     net = slim.fully_connected(net, 4096 , scope= 'fc6' )
     net = slim.dropout(net, 0.5 , scope= 'dropout6' )
     net = slim.fully_connected(net, 4096 , scope= 'fc7' )
     net = slim.dropout(net, 0.5 , scope= 'dropout7' )
     net = slim.fully_connected(net, 1000 , activation_fn=None, scope= 'fc8' )
   return net

三.训练模型

import tensorflow as tf
vgg = tf.contrib.slim.nets.vgg
 
# Load the images and labels.
images, labels = ...
 
# Create the model.
predictions, _ = vgg.vgg_16(images)
 
# Define the loss functions and get the total loss.
loss = slim.losses.softmax_cross_entropy(predictions, labels)

   

关于loss,要说一下定义本身的loss的方法,以及注意不要忘记加入到slim中让slim看到你的loss。

还有正则项也是须要手动添加进loss当中的,否则最后计算的时候就不优化正则目标了。

# Load the images and labels.

images, scene_labels, depth_labels, pose_labels = ...
 
# Create the model.
scene_predictions, depth_predictions, pose_predictions = CreateMultiTaskModel(images)
 
# Define the loss functions and get the total loss.
classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)
sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)
pose_loss = MyCustomLossFunction(pose_predictions, pose_labels)
slim.losses.add_loss(pose_loss) # Letting TF-Slim know about the additional loss.
 
# The following two ways to compute the total loss are equivalent:
regularization_loss = tf.add_n(slim.losses.get_regularization_losses())
total_loss1 = classification_loss + sum_of_squares_loss + pose_loss + regularization_loss
 
# (Regularization Loss is included in the total loss by default ).
total_loss2 = slim.losses.get_total_loss()

四.读取保存模型变量

经过如下功能咱们能够载入模型的部分变量:

# Create some variables.

v1 = slim.variable(name= "v1" , ...)
v2 = slim.variable(name= "nested/v2" , ...)
...
 
# Get list of variables to restore (which contains only 'v2' ).
variables_to_restore = slim.get_variables_by_name("v2")
 
# Create the saver which will be used to restore the variables.
restorer = tf.train.Saver(variables_to_restore)
 
with tf.Session() as sess:
   # Restore variables from disk.
   restorer.restore(sess, "/tmp/model.ckpt" )
   print( "Model restored." )
 
除了这种部分变量加载的方法外,咱们甚至还能加载到不一样名字的变量中。

 

假设咱们定义的网络变量是conv1/weights,而从VGG加载的变量名为vgg16/conv1/weights,正常load确定会报错(找不到变量名),可是能够这样:

def name_in_checkpoint(var):
   return 'vgg16/' + var.op.name
 
variables_to_restore = slim.get_model_variables()
variables_to_restore = {name_in_checkpoint(var):var for var in variables_to_restore}
restorer = tf.train.Saver(variables_to_restore)
 
with tf.Session() as sess:
   # Restore variables from disk.
   restorer.restore(sess, "/tmp/model.ckpt" )

     经过这种方式咱们能够加载不一样变量名的变量

相关文章
相关标签/搜索