MLlib是Spark的机器学习(machine learing)库,其目标是使得机器学习的使用更加方便和简单,其具备以下功能:html
MLlib有两个API架包:算法
MLlib标准化机器学习算法的API,使得更容易将多个算法组合成到单个管道(工做流)。其设计思想是受到Scikit-learn项目的启发。sql
机器学习中数据集是由一个个样本组成,而每一个样本实际上是一条有多个特征组成的记录,从而数据集实际上是一个矩阵结构。而Spark SQL中的DataFrame结构也拥有相似的结构,DataFrame内部有一行行的数据Row组成,每一个Row对象内部也能够由多个属性组成。从而MLlib使用DataFrame来描述机器学习中的数据集正好不过了。apache
Spark SQL的DataFrame其实一种Dataset类型,只是存储的是Row元素,以下Spark源码所示:数组
Package object sql{ app ……框架 type DataFrame = Dataset[Row] 机器学习 }ide |
MLlib使用Pipeline来组织多个ML模型,其内部有多个Transformer和Estimator对象,从而组成一个算法工做流。在Spark ML中与Pipeline相关联的类如图 1所示。从图中可明显看出Transformer和Estimator都是PipelineStage抽象类的子类;而且Pipeline类内部有一个stages数组来存储PipelineStage对象,即存放Transformer和Estimator对象;当用户调用Pipeline的fit()方法时,将产生一个PipelineModel对象;PipelineModel类有一个transform()方法能返回一个DataFrame对象。工具
图 1
Pipeline是由一系列stage组成,这些stage有两种类型:Transformer和Estimator。Stage在Pipeline的运行是有序的,并且输入的DataFrame会在stage中被转换和传递。若stage是Transformer类型,则对条用Transformer对象的transform()方法将输入的DataFrame转换为另外一种DataFrame;若stage是Estimator类型,则会调用Estimator对象的fit()方法产生Transformer对象,调用该Transformer对象的transform()方法同样会产生一个DataFrame。
能够将上述这一段,详细解释为两个过程:模型训练和模型预测,以下所示:
Pipeline对象内部有一个stages容器,存放多个Transformer对象和一个Estimator对象。当用户调用Pipeline对象的fit()方法时,会接收输入的DataFrame,而后在这些stage中被转换和传递。当传递到最后一个stage(Estimator对象)时,将生成一个PipelineModel对象(Transformer子类),如图 2所示。
图 2
用户调用上图中Pipeline的fit()时,会将stages容器存放的全部Transformer对象和Estimator对象生成的Transformer对象都添加到PipelineModel对象中,该对象有一个stages容器(Array[Transformer]类型),其可以存放Transformer对象。
经过Spark源码,能够查看Pipeline类中的fit()内容以下所示:
override def fit(dataset: Dataset[_]): PipelineModel = { transformSchema(dataset.schema, logging = true) val theStages = $(stages) … var curDataset = dataset val transformers = ListBuffer.empty[Transformer] theStages.view.zipWithIndex.foreach { case (stage, index) => if (index <= indexOfLastEstimator) { val transformer = stage match { case estimator: Estimator[_] =>//如果Estimator对象,则调用fit()方法生成一个Transformer estimator.fit(curDataset) case t: Transformer =>//如果Transformer对象,则直接返回 t case _ => throw new IllegalArgumentException( s"Does not support stage $stage of type ${stage.getClass}") } if (index < indexOfLastEstimator) { curDataset = transformer.transform(curDataset)//若是不是最后的对象,则调用transformer对象的transform方法,生成一个DataFrame } transformers += transformer //将生成的全部Transformer对象都添加到一个list中 } else { transformers += stage.asInstanceOf[Transformer] } } new PipelineModel(uid, transformers.toArray).setParent(this) //最后建立PipelineModel对象,并传递上述的Transformer列表。 } |
在模型训练阶段会经过向Pipeline的fit()方法传递DataFrame数据来训练模型,从而生成一个PipelineModel对象(Transformer子类),该对象内部有一个stages容器,存放了全部Transformer对象。
当进行模型预测时,即经过向PipelineModel对象的transform传递一个DataFrame数据来预测时,会依序调用其stages容器中的Transformer对象,每一个Transformer对象都有一个DataFrame输入和一个DataFrame的输出,最后生成一个DataFrame做为用户的输出,如图 3所示。
图 3
相似,能够查看PipelineModel对象的transform()方法,以下所示:
override def transform(dataset: Dataset[_]): DataFrame = { transformSchema(dataset.schema, logging = true) stages.foldLeft(dataset.toDF)((cur, transformer) => transformer.transform(cur)) } |
stages.foldLeft(dataset.toDF)((cur, transformer) => transformer.transform(cur))语句正是图 3的实现,即第一次输入数据是dataset.toDF,而后每次调用transformer.transform(cur))方法,产生的DataFrame输出做为下一次的输入。
经过上述Pipeline工做机制的分析,如今从机器学习的角度总结一下Pipeline、Transformer和Estimator三者之间的关系,如图 4所示。
图 4
本节以Estimator类为例,没有使用Pipeline结构来组织Estimator和Transformer对象。Estimator类能够单独使用,不须要Pipeline结构也能工做,此时Estimator相似Scikit-learn框架。首先,用户直接调用Estimator对象的fit()方法来训练数据;而后,根据fit()方法返回的Transformer对象,用户接着调用Transformer的transform()方法来预测或测试;
以下所示的完整程序:
// scalastyle:off println package org.apache.spark.examples.ml
// $example on$ import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.linalg.{Vector, Vectors} import org.apache.spark.ml.param.ParamMap import org.apache.spark.sql.Row // $example off$ import org.apache.spark.sql.SparkSession
object EstimatorTransformerParamExample {
def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("EstimatorTransformerParamExample") .getOrCreate()
// $example on$ // Prepare training data from a list of (label, features) tuples. val training = spark.createDataFrame(Seq( (1.0, Vectors.dense(0.0, 1.1, 0.1)), (0.0, Vectors.dense(2.0, 1.0, -1.0)), (0.0, Vectors.dense(2.0, 1.3, 1.0)), (1.0, Vectors.dense(0.0, 1.2, -0.5)) )).toDF("label", "features")
// Create a LogisticRegression instance. This instance is an Estimator. val lr = new LogisticRegression() // Print out the parameters, documentation, and any default values. println("LogisticRegression parameters:\n" + lr.explainParams() + "\n")
// We may set parameters using setter methods. lr.setMaxIter(10) .setRegParam(0.01)
// Learn a LogisticRegression model. This uses the parameters stored in lr. val model1 = lr.fit(training) // Since model1 is a Model (i.e., a Transformer produced by an Estimator), // we can view the parameters it used during fit(). // This prints the parameter (name: value) pairs, where names are unique IDs for this // LogisticRegression instance. println("Model 1 was fit using parameters: " + model1.parent.extractParamMap)
// We may alternatively specify parameters using a ParamMap, // which supports several methods for specifying parameters. val paramMap = ParamMap(lr.maxIter -> 20) .put(lr.maxIter, 30) // Specify 1 Param. This overwrites the original maxIter. .put(lr.regParam -> 0.1, lr.threshold -> 0.55) // Specify multiple Params.
// One can also combine ParamMaps. val paramMap2 = ParamMap(lr.probabilityCol -> "myProbability") // Change output column name. val paramMapCombined = paramMap ++ paramMap2
// Now learn a new model using the paramMapCombined parameters. // paramMapCombined overrides all parameters set earlier via lr.set* methods. val model2 = lr.fit(training, paramMapCombined) println("Model 2 was fit using parameters: " + model2.parent.extractParamMap)
// Prepare test data. val test = spark.createDataFrame(Seq( (1.0, Vectors.dense(-1.0, 1.5, 1.3)), (0.0, Vectors.dense(3.0, 2.0, -0.1)), (1.0, Vectors.dense(0.0, 2.2, -1.5)) )).toDF("label", "features")
// Make predictions on test data using the Transformer.transform() method. // LogisticRegression.transform will only use the 'features' column. // Note that model2.transform() outputs a 'myProbability' column instead of the usual // 'probability' column since we renamed the lr.probabilityCol parameter previously. model2.transform(test) .select("features", "label", "myProbability", "prediction") .collect() .foreach { case Row(features: Vector, label: Double, prob: Vector, prediction: Double) => println(s"($features, $label) -> prob=$prob, prediction=$prediction") } // $example off$
spark.stop() } } |
其实Estimator类的单独使用,也能够理解为Pipeline对象只有一个Estimator对象。上述的程序来自:\src\main\scala\org\apache\spark\examples\ml\ ElementwiseProductExample.scala
输入的Dataframe通过PipelineStage对象处理后悔输出新的DataFrame,此时输出的DataFrame会增长一些列,即增长了一些特征,而具体增长什么列,须要看具体是什么PipelineStage对象。
以下所示,输入DataFrame只有三列"id"、"text"、"label",但输出DataFrame不只保存了输入列,同时增长了一些列。
package org.apache.spark.examples.ml
// $example on$ import org.apache.spark.ml.{Pipeline, PipelineModel} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.ml.linalg.Vector import org.apache.spark.sql.Row // $example off$ import org.apache.spark.sql.SparkSession
object PipelineExample {
def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("PipelineExample") .getOrCreate()
// $example on$ // Prepare training documents from a list of (id, text, label) tuples. val training = spark.createDataFrame(Seq( (0L, "a b c d e spark", 1.0), (1L, "b d", 0.0), (2L, "spark f g h", 1.0), (3L, "hadoop mapreduce", 0.0) )).toDF("id", "text", "label")
// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. //Tokenizer功能是对输入的DataFrame某一列进行分割,分割后将数据添加到DataFrame的新列种 val tokenizer = new Tokenizer() .setInputCol("text") //设置输入DataFrame中要处理的列名字 .setOutputCol("words") //设置输出的DataFrame中增长列的名字 val hashingTF = new HashingTF() .setNumFeatures(1000) .setInputCol(tokenizer.getOutputCol) .setOutputCol("features") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.001) val pipeline = new Pipeline() .setStages(Array(tokenizer, hashingTF, lr))
// Fit the pipeline to training documents. val model = pipeline.fit(training)
// Now we can optionally save the fitted pipeline to disk model.write.overwrite().save("/tmp/spark-logistic-regression-model")
// We can also save this unfit pipeline to disk pipeline.write.overwrite().save("/tmp/unfit-lr-model")
// And load it back in during production val sameModel = PipelineModel.load("/tmp/spark-logistic-regression-model")
// Prepare test documents, which are unlabeled (id, text) tuples. val test = spark.createDataFrame(Seq( (4L, "spark i j k"), (5L, "l m n"), (6L, "spark hadoop spark"), (7L, "apache hadoop") )).toDF("id", "text")
// Make predictions on test documents. model.transform(test) .select("id", "text", "probability", "prediction") .collect() .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) => println(s"($id, $text) --> prob=$prob, prediction=$prediction") } // $example off$
spark.stop() } } |