导读:数据总线(DBus)专一于数据的实时采集与实时分发,能够对IT系统在业务流程中产生的数据进行汇聚,通过转换处理后成为统一JSON的数据格式(UMS),提供给不一样数据使用方订阅和消费,充当数仓平台、大数据分析平台、实时报表和实时营销等业务的数据源。
本文从数据分片的角度出发,具体介绍DBus在数据采集的过程当中,运用了什么样的分片策略和分片原理,以及过程当中遇到的问题及解决方案。java
1、分片策略
对于传统的关系型数据库,DBus经过提供全量数据拉取和增量数据采集两种途径知足用户数据采集需求。DBus数据抽取流程以下图所示(以mysql为例):mysql

全量数据采集的主要原理是:根据主键、惟一索引、索引等信息,肯定分片列。之因此分片列要根据主键、惟一索引、索引等选择,是由于这些列的数据在库里创建了良好索引,能提高数据扫描的效率。sql
根据选定的分片列,对数据进行拆片,肯定每片数据的上下界,而后根据每片上下界,以6~8左右的并发度,进行数据拉取。(6~8左右的并发度是经大量测试得到的经验值。实验显示,6~8左右的并发度既不会对源库造成太高压力,又能最大限度提高全量数据拉取的效率。)数据库
DBus分片策略示意图:并发

DBus拉取策略示意图:app

那么,DBus支持什么类型的列做为分片列?不一样类型的分片列,分片策略如何呢?oop
分片策略这块,DBus借鉴了Sqoop的分片设计,支持如下类型的列做为分片列:测试
- BigDecimal/numeric
- Boolean
- Date/time/timestamp
- Float/double
- Integer/smallint/long
- Char/Varchar/Text/NText
拆片原理大致一致,都是根据分片列的最大最小值,以及设定的每片大小,进行每一分片上下界的计算和肯定。但具体实现细节差别很大。尤为是Text/NText类型,借鉴、应用的过程当中发现一些问题,咱们进行了一些调整和优化。大数据
本文主要和你们分享一下遇到的坑和咱们的解决办法。优化
2、分片原理
2.1 数字类型分片列
让咱们先以最简单、明了的数字类型分片列为例介绍分片原理。
如前所述,咱们会按照主键->惟一索引->索引的优先级肯定分片列。若是表有主键,咱们以主键列为分片列;若是没有主键,有惟一索引,咱们以惟一索引列为分片列……以此类推。若是找到的键或索引是联合主键或联合索引,我取其中的第一列做为分片列。若是没有找到任何合适的列做为分片列,则不分片,全部数据做一片进行拉取(没法享受并发拉取带来的效率提高)。
首先要根据必定的规则选取某一列做为分片列,而后根据分片列的最大最小值,以及设定的每片大小,进行每一分片上下界的计算和肯定:
1)获取切分字段的MIN()和MAX()
- "SELECT MIN(" + qualifiedName + "),
- MAX(" + qualifiedName + ") FROM (" + query + ") AS " + alias
2)根据MIN和MAX不一样的类型采用不一样的切分方式
- 支持有Date, Text, Float, Integer,Boolean, NText, BigDecimal等等。
- 以数字为例子:
- 步长=(最大值-最小值)/mapper个数
- 生成的区间为
- [最小值,最小值+步长)
- [最小值+步长,最小值+2*步长)
- ...
- [最大值-步长,最大值]
- 生成的condition相似:
- splitcol >= min and splitcol < min+splitsize
实现代码片断以下:

2.2 字符串类型分片列
对于分片列类型为数字类型的状况,很好理解。
若是分片列类型为char/varchar等字符串类型呢?每一片的上下界该如何计算?
原理仍是同样的:查出该列的最小、最大值,根据每片大小,计算每片分界点,生成每一片的上下界。
技术细节上不同的地方是:每片分界点/上下界的计算。
分片列类型为int,min 为2 ,max为10, shard size为3,分片很好理解:
Split[2,5)
Split[5,8)
Split[8,10]
若是分片列类型为varchar(128), min 为abc,max为 xyz,怎么计算拆片点呢?
Sqoop的分片机制是经过将“字符串”映射为“数字”,根据数字计算出分片上下界,而后将以数字表达的分片上下界映射回字符串,以此字符串做为分片的上/下界。以下所示:
- 字符串映射为数值 (a/65536 + b/65536^2 + c/65536^3)
- 数值split 计算分割点,生成插值
- 插值映射回会字符串

然而,在实际应用中,上述分片机制碰到各类问题,下面将咱们碰到和解决这一系列问题的经验分享以下。
3、分片经验
3.1 首先,根据上面的分片进行数据的拉取,有卡死状况。
1)现象
- 无错误输出,但全量抽取进程输出一部分分片后卡死,无任何输出
- 通过检查,发现30秒后, storm worker被莫名其妙重启了?
2)分析
- nimbus.task.timeout.secs的缺省时间为30秒,nimbus发现worker无响应,就重启动worker
- 为何worker无响应?
- 字符串的插值是任意可能的,例如:
- splitcol >= ‘abc’ and splitcol < ‘fxxx’xx’
3)解决办法
- 使用binding变量方式,而不是拼接字符串方式
- Select * from T splitcol >= ?and splitcol < ?
3.2 更新后碰到新问题,报Illegal mix of collations异常。
1)现象
- 显示exception:[ERROR] Illegal mix of collations (utf8_general -_ci,IMPLICIT) and (utf8mb4_general_ci,COERCIBLE) for operation '<'
- java.sql.SQLException: Illegal mix of collations (utf8_general_ci,IMPLICIT) and (utf8mb4_general_ci,COERCIBLE) for operation '<‘
2)分析
- 什么是Utf8和utf8mb4?
- utf8 是 Mysql 中的一种字符集,只支持最长三个字节的 UTF-8字符
- 三个字节的所有编码空间: 000000~ 00FFFF
- MySQL在5.5.3以后增长了这个utf8mb4的编码,mb4就是most bytes 4的意思,专门用来兼容四字节的unicode
- 四个字节新增的编码空间:010000~10FFFF
- 彷佛生成了utf8mb4的码的字符串, splitcol和生成的插值字符串,属于不一样的字符集,没法进行比较,Splitcol属于utf8字符集,而插值属于utf8mb4字符集
3)检查发现
- character_set_server:utf8mb4
- character_set_database/table : utf8
- Connection url: utf8 = utf8mb4
4)Unicode
- 代码空间:总共有1,114,112个代码点,编号从0x0到0x10FFFF
- 代码平面:Unicode分红了17个代码平面(Code Plane),编号为#0到#16。每一个代码平面65,536个代码点
5)UTF16
- 从U+0000至U+FFFF基本多语言平面(BMP)
- 包含了最经常使用的字符
- 实际字符须要除去代理区,也就是从U+0000至U+D7FF 和 U+E000 至U+FFFF。
- UTF8
- 从U+D800到U+DFFF的码位(代理区)
- Unicode标准规定U+D800..U+DFFF的值不对应于任何字符


- 对应Unicode 是\u1F601
- 对应的utf16 码是2个word,即:0xd83d, 0xde01,对应java string length为2.
根据上述字符集只是,咱们找到了问题症结所在:
- bigDecimalToString()生成的插值:
- 没法保证是否会落入U+D800到U+DFFF的代理区
- 没法保证连续两个word知足代理对的标准,可能会被认定为乱码
- 代理区间占整个U+FFFF区间很小
6)解决方案
- 回避生成在代理区的字符,用合法的BMP区字符替代
- if (0xD800 <= codePoint && codePoint <= 0xDFFF) {
- codePoint = 0xD3FF;
- }
- 可能的缺点是:分片不那么均匀,但因为代理区占整个U+FFFF区间很小,影响不大

↓↓↓ 
3.3 拉取总数不对
解决字符集乱码问题后,能正常拉取数据,但总数不对。
1)现象
- 没有错误,全量抽取完成,但数量不对,整个表只有300万,实际抽取了500万?
2)分析
- 程序并无错,存在重复数据
- utf8_genera_ci不区分大小写,ci为case insensitive的缩写,即大小写不敏感
- utf8_bin将字符串中的每个字符用二进制数据存储,区分大小写
- 例如:SELECT * FROM table WHERE txt = 'a'
- 那么在utf8_bin中你就找不到 txt = 'A', 而 utf8_general_ci 则能够.
3)解决方案
相似: SELECT * FROM tableName WHERE binary columnName = 'a';
至此,对char、varchar类型字符串分片列的分片,也有了很好的支持。
做者:尹宏春
来源:宜信技术学院