深刻JVM锁机制2-Lock

前文(深刻JVM锁机制-synchronized)分析了JVM中的synchronized实现,本文继续分析JVM中的另外一种锁Lock的实现。与synchronized不一样的是,Lock彻底用Java写成,在java这个层面是无关JVM实现的。 java

在java.util.concurrent.locks包中有不少Lock的实现类,经常使用的有ReentrantLock、ReadWriteLock(实现类ReentrantReadWriteLock),其实现都依赖java.util.concurrent.AbstractQueuedSynchronizer类,实现思路都大同小异,所以咱们以ReentrantLock做为讲解切入点。 node

1. ReentrantLock的调用过程

通过观察ReentrantLock把全部Lock接口的操做都委派到一个Sync类上,该类继承了AbstractQueuedSynchronizer: 算法

[java]  view plain copy
  1. static abstract class Sync extends AbstractQueuedSynchronizer  

Sync又有两个子类: 设计模式

[java]  view plain copy
  1. final static class NonfairSync extends Sync  
[java]  view plain copy
  1. final static class FairSync extends Sync  

显然是为了支持公平锁和非公平锁而定义,默认状况下为非公平锁。 数据结构

先理一下Reentrant.lock()方法的调用过程(默认非公平锁): 并发

这些讨厌的Template模式致使很难直观的看到整个调用过程,其实经过上面调用过程及AbstractQueuedSynchronizer的注释能够发现,AbstractQueuedSynchronizer中抽象了绝大多数Lock的功能,而只把tryAcquire方法延迟到子类中实现。tryAcquire方法的语义在于用具体子类判断请求线程是否能够得到锁,不管成功与否AbstractQueuedSynchronizer都将处理后面的流程。 app

2. 锁实现(加锁)

简单说来,AbstractQueuedSynchronizer会把全部的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时会激活本身的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程所有处于阻塞状态,通过调查线程的显式阻塞是经过调用LockSupport.park()完成,而LockSupport.park()则调用sun.misc.Unsafe.park()本地方法,再进一步,HotSpot在Linux中中经过调用pthread_mutex_lock函数把线程交给系统内核进行阻塞。 函数

该队列如图: 高并发

与synchronized相同的是,这也是一个虚拟队列,不存在队列实例,仅存在节点之间的先后关系。使人疑惑的是为何采用CLH队列呢?原生的CLH队列是用于自旋锁,但Doug Lea把其改造为阻塞锁。 布局

当有线程竞争锁时,该线程会首先尝试得到锁,这对于那些已经在队列中排队的线程来讲显得不公平,这也是非公平锁的由来,与synchronized实现相似,这样会极大提升吞吐量。

若是已经存在Running线程,则新的竞争线程会被追加到队尾,具体是采用基于CAS的Lock-Free算法,由于线程并发对Tail调用CAS可能会致使其余线程CAS失败,解决办法是循环CAS直至成功。AbstractQueuedSynchronizer的实现很是精巧,使人叹为观止,不入细节难以彻底领会其精髓,下面详细说明实现过程:

2.1 Sync.nonfairTryAcquire

nonfairTryAcquire方法将是lock方法间接调用的第一个方法,每次请求锁时都会首先调用该方法。

[java]  view plain copy
  1. final boolean nonfairTryAcquire(int acquires) {  
  2.     final Thread current = Thread.currentThread();  
  3.     int c = getState();  
  4.     if (c == 0) {  
  5.         if (compareAndSetState(0, acquires)) {  
  6.             setExclusiveOwnerThread(current);  
  7.             return true;  
  8.         }  
  9.     }  
  10.     else if (current == getExclusiveOwnerThread()) {  
  11.         int nextc = c + acquires;  
  12.         if (nextc < 0// overflow  
  13.             throw new Error("Maximum lock count exceeded");  
  14.         setState(nextc);  
  15.         return true;  
  16.     }  
  17.     return false;  
  18. }  

该方法会首先判断当前状态,若是c==0说明没有线程正在竞争该锁,若是不c !=0 说明有线程正拥有了该锁。

若是发现c==0,则经过CAS设置该状态值为acquires,acquires的初始调用值为1,每次线程重入该锁都会+1,每次unlock都会-1,但为0时释放锁。若是CAS设置成功,则能够预计其余任何线程调用CAS都不会再成功,也就认为当前线程获得了该锁,也做为Running线程,很显然这个Running线程并未进入等待队列。

若是c !=0 但发现本身已经拥有锁,只是简单地++acquires,并修改status值,但由于没有竞争,因此经过setStatus修改,而非CAS,也就是说这段代码实现了偏向锁的功能,而且实现的很是漂亮。

2.2 AbstractQueuedSynchronizer.addWaiter

addWaiter方法负责把当前没法得到锁的线程包装为一个Node添加到队尾:

[java]  view plain copy
  1. private Node addWaiter(Node mode) {  
  2.     Node node = new Node(Thread.currentThread(), mode);  
  3.     // Try the fast path of enq; backup to full enq on failure  
  4.     Node pred = tail;  
  5.     if (pred != null) {  
  6.         node.prev = pred;  
  7.         if (compareAndSetTail(pred, node)) {  
  8.             pred.next = node;  
  9.             return node;  
  10.         }  
  11.     }  
  12.     enq(node);  
  13.     return node;  
  14. }  

其中参数mode是独占锁仍是共享锁,默认为null,独占锁。追加到队尾的动做分两步:

  1. 若是当前队尾已经存在(tail!=null),则使用CAS把当前线程更新为Tail
  2. 若是当前Tail为null或则线程调用CAS设置队尾失败,则经过enq方法继续设置Tail

下面是enq方法:

[java]  view plain copy
  1. private Node enq(final Node node) {  
  2.     for (;;) {  
  3.         Node t = tail;  
  4.         if (t == null) { // Must initialize  
  5.             Node h = new Node(); // Dummy header  
  6.             h.next = node;  
  7.             node.prev = h;  
  8.             if (compareAndSetHead(h)) {  
  9.                 tail = node;  
  10.                 return h;  
  11.             }  
  12.         }  
  13.         else {  
  14.             node.prev = t;  
  15.             if (compareAndSetTail(t, node)) {  
  16.                 t.next = node;  
  17.                 return t;  
  18.             }  
  19.         }  
  20.     }  
  21. }  


该方法就是循环调用CAS,即便有高并发的场景,无限循环将会最终成功把当前线程追加到队尾(或设置队头)。总而言之,addWaiter的目的就是经过CAS把当前如今追加到队尾,并返回包装后的Node实例。

把线程要包装为Node对象的主要缘由,除了用Node构造供虚拟队列外,还用Node包装了各类线程状态,这些状态被精心设计为一些数字值:

  • SIGNAL(-1) :线程的后继线程正/已被阻塞,当该线程release或cancel时要从新这个后继线程(unpark)
  • CANCELLED(1):由于超时或中断,该线程已经被取消
  • CONDITION(-2):代表该线程被处于条件队列,就是由于调用了Condition.await而被阻塞
  • PROPAGATE(-3):传播共享锁
  • 0:0表明无状态

2.3 AbstractQueuedSynchronizer.acquireQueued

acquireQueued的主要做用是把已经追加到队列的线程节点(addWaiter方法返回值)进行阻塞,但阻塞前又经过tryAccquire重试是否能得到锁,若是重试成功能则无需阻塞,直接返回

[java]  view plain copy
  1. final boolean acquireQueued(final Node node, int arg) {  
  2.     try {  
  3.         boolean interrupted = false;  
  4.         for (;;) {  
  5.             final Node p = node.predecessor();  
  6.             if (p == head && tryAcquire(arg)) {  
  7.                 setHead(node);  
  8.                 p.next = null// help GC  
  9.                 return interrupted;  
  10.             }  
  11.             if (shouldParkAfterFailedAcquire(p, node) &&  
  12.                 parkAndCheckInterrupt())  
  13.                 interrupted = true;  
  14.         }  
  15.     } catch (RuntimeException ex) {  
  16.         cancelAcquire(node);  
  17.         throw ex;  
  18.     }  
  19. }  


仔细看看这个方法是个无限循环,感受若是p == head && tryAcquire(arg)条件不知足循环将永远没法结束,固然不会出现死循环,奥秘在于第12行的parkAndCheckInterrupt会把当前线程挂起,从而阻塞住线程的调用栈。

[java]  view plain copy
  1. private final boolean parkAndCheckInterrupt() {  
  2.     LockSupport.park(this);  
  3.     return Thread.interrupted();  
  4. }  

如前面所述,LockSupport.park最终把线程交给系统(Linux)内核进行阻塞。固然也不是立刻把请求不到锁的线程进行阻塞,还要检查该线程的状态,好比若是该线程处于Cancel状态则没有必要,具体的检查在shouldParkAfterFailedAcquire中:

[java]  view plain copy
  1.   private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {  
  2.       int ws = pred.waitStatus;  
  3.       if (ws == Node.SIGNAL)  
  4.           /* 
  5.            * This node has already set status asking a release 
  6.            * to signal it, so it can safely park 
  7.            */  
  8.           return true;  
  9.       if (ws > 0) {  
  10.           /* 
  11.            * Predecessor was cancelled. Skip over predecessors and 
  12.            * indicate retry. 
  13.            */  
  14.    do {  
  15. node.prev = pred = pred.prev;  
  16.    } while (pred.waitStatus > 0);  
  17.    pred.next = node;  
  18.       } else {  
  19.           /* 
  20.            * waitStatus must be 0 or PROPAGATE. Indicate that we 
  21.            * need a signal, but don't park yet. Caller will need to 
  22.            * retry to make sure it cannot acquire before parking.  
  23.            */  
  24.           compareAndSetWaitStatus(pred, ws, Node.SIGNAL);  
  25.       }   
  26.       return false;  
  27.   }  

检查原则在于:

  • 规则1:若是前继的节点状态为SIGNAL,代表当前节点须要unpark,则返回成功,此时acquireQueued方法的第12行(parkAndCheckInterrupt)将致使线程阻塞
  • 规则2:若是前继节点状态为CANCELLED(ws>0),说明前置节点已经被放弃,则回溯到一个非取消的前继节点,返回false,acquireQueued方法的无限循环将递归调用该方法,直至规则1返回true,致使线程阻塞
  • 规则3:若是前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,返回false后进入acquireQueued的无限循环,与规则2同

整体看来,shouldParkAfterFailedAcquire就是靠前继节点判断当前线程是否应该被阻塞,若是前继节点处于CANCELLED状态,则顺便删除这些节点从新构造队列。

至此,锁住线程的逻辑已经完成,下面讨论解锁的过程。

3. 解锁

请求锁不成功的线程会被挂起在acquireQueued方法的第12行,12行之后的代码必须等线程被解锁锁才能执行,假如被阻塞的线程获得解锁,则执行第13行,即设置interrupted = true,以后又进入无限循环。

从无限循环的代码能够看出,并非获得解锁的线程必定能得到锁,必须在第6行中调用tryAccquire从新竞争,由于锁是非公平的,有可能被新加入的线程得到,从而致使刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓。经过以后将要介绍的解锁机制会看到,第一个被解锁的线程就是Head,所以p == head的判断基本都会成功。

至此能够看到,把tryAcquire方法延迟到子类中实现的作法很是精妙并具备极强的可扩展性,使人叹为观止!固然精妙的不是这个Templae设计模式,而是Doug Lea对锁结构的精心布局。

解锁代码相对简单,主要体如今AbstractQueuedSynchronizer.release和Sync.tryRelease方法中:

class AbstractQueuedSynchronizer

[java]  view plain copy
  1. public final boolean release(int arg) {  
  2.     if (tryRelease(arg)) {  
  3.         Node h = head;  
  4.         if (h != null && h.waitStatus != 0)  
  5.             unparkSuccessor(h);  
  6.         return true;  
  7.     }  
  8.     return false;  
  9. }  

class Sync

[java]  view plain copy
  1. protected final boolean tryRelease(int releases) {  
  2.     int c = getState() - releases;  
  3.     if (Thread.currentThread() != getExclusiveOwnerThread())  
  4.         throw new IllegalMonitorStateException();  
  5.     boolean free = false;  
  6.     if (c == 0) {  
  7.         free = true;  
  8.         setExclusiveOwnerThread(null);  
  9.     }  
  10.     setState(c);  
  11.     return free;  
  12. }  


tryRelease与tryAcquire语义相同,把如何释放的逻辑延迟到子类中。tryRelease语义很明确:若是线程屡次锁定,则进行屡次释放,直至status==0则真正释放锁,所谓释放锁即设置status为0,由于无竞争因此没有使用CAS。

release的语义在于:若是能够释放锁,则唤醒队列第一个线程(Head),具体唤醒代码以下:

[java]  view plain copy
  1. private void unparkSuccessor(Node node) {  
  2.     /* 
  3.      * If status is negative (i.e., possibly needing signal) try 
  4.      * to clear in anticipation of signalling. It is OK if this 
  5.      * fails or if status is changed by waiting thread. 
  6.      */  
  7.     int ws = node.waitStatus;  
  8.     if (ws < 0)  
  9.         compareAndSetWaitStatus(node, ws, 0);   
  10.   
  11.     /* 
  12.      * Thread to unpark is held in successor, which is normally 
  13.      * just the next node.  But if cancelled or apparently null, 
  14.      * traverse backwards from tail to find the actual 
  15.      * non-cancelled successor. 
  16.      */  
  17.     Node s = node.next;  
  18.     if (s == null || s.waitStatus > 0) {  
  19.         s = null;  
  20.         for (Node t = tail; t != null && t != node; t = t.prev)  
  21.             if (t.waitStatus <= 0)  
  22.                 s = t;  
  23.     }  
  24.     if (s != null)  
  25.         LockSupport.unpark(s.thread);  
  26. }  


这段代码的意思在于找出第一个能够unpark的线程,通常说来head.next == head,Head就是第一个线程,但Head.next可能被取消或被置为null,所以比较稳妥的办法是从后往前找第一个可用线程。貌似回溯会致使性能下降,其实这个发生的概率很小,因此不会有性能影响。以后即是通知系统内核继续该线程,在Linux下是经过pthread_mutex_unlock完成。以后,被解锁的线程进入上面所说的从新竞争状态。

4. Lock VS Synchronized

AbstractQueuedSynchronizer经过构造一个基于阻塞的CLH队列容纳全部的阻塞线程,而对该队列的操做均经过Lock-Free(CAS)操做,但对已经得到锁的线程而言,ReentrantLock实现了偏向锁的功能。

synchronized的底层也是一个基于CAS操做的等待队列,但JVM实现的更精细,把等待队列分为ContentionList和EntryList,目的是为了下降线程的出列速度;固然也实现了偏向锁,从数据结构来讲两者设计没有本质区别。但synchronized还实现了自旋锁,并针对不一样的系统和硬件体系进行了优化,而Lock则彻底依靠系统阻塞挂起等待线程。

固然Lock比synchronized更适合在应用层扩展,能够继承AbstractQueuedSynchronizer定义各类实现,好比实现读写锁(ReadWriteLock),公平或不公平锁;同时,Lock对应的Condition也比wait/notify要方便的多、灵活的多。

相关文章
相关标签/搜索