~~本项目根据DeepLabv3+模型一键抠图示例,主要采用PaddleHub DeepLabv3+模型(deeplabv3p_xception65_humanseg)和python图像处理库opencv、PIL等完成。在最新做中,做者经过encoder-decoder进行多尺度信息的融合,同时保留了原来的空洞卷积和ASSP层, 其骨干网络使用了Xception模型,提升了语义分割的健壮性和运行速率,在 PASCAL VOC 2012 dataset取得新的state-of-art performance,该PaddleHub Module使用百度自建数据集进行训练,可用于人像分割,支持任意大小的图片输入。在完成一键抠图以后,经过图像合成,实现扣图比赛任务。html
PaddleHub 是基于 PaddlePaddle 开发的预训练模型管理工具,能够借助预训练模型更便捷地开展迁移学习工做,目前的预训练模型涵盖了图像分类、目标检测、词法分析、语义模型、情感分析、视频分类、图像生成、图像分割、文本审核、关键点检测等主流模型。html5
PaddleHub官网:PaddleHub官网python
PaddleHub项目地址:PaddleHub githubgit
更多PaddleHub预训练模型应用可见:教程合集课程 github
NOTE: 若是您在本地运行该项目示例,须要首先安装PaddleHub。若是您在线运行,须要首先fork该项目示例。以后按照该示例操做便可。网络
!pip install paddlehub==1.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple !hub install deeplabv3p_xception65_humanseg==1.0.0
import matplotlib.pyplot as plt import matplotlib.image as mpimg from matplotlib import animation import cv2 import paddlehub as hub from PIL import Image, ImageSequence from IPython.display import display, HTML import numpy as np import imageio import os
# 测试图片路径和输出路径 test_path = 'image/test/' output_path = 'image/blend_out/' # 待预测图片 test_img_path = ["test.jpg"] test_img_path = [test_path + img for img in test_img_path] img = mpimg.imread(test_img_path[0]) # 展现待预测图片 plt.figure(figsize=(10,10)) plt.imshow(img) plt.axis('off') plt.show()
经过加载PaddleHub DeepLabv3+模型(deeplabv3p_xception65_humanseg)实现一键抠图app
module = hub.Module(name="deeplabv3p_xception65_humanseg") input_dict = {"image": test_img_path} # execute predict and print the result results = module.segmentation(data=input_dict) for result in results: print(result) # 预测结果展现 out_img_path = 'humanseg_output/' + os.path.basename(test_img_path[0]).split('.')[0] + '.png' img = mpimg.imread(out_img_path) plt.figure(figsize=(10,10)) plt.imshow(img) plt.axis('off') plt.show()
[32m[2020-04-01 22:40:09,064] [ INFO] - Installing deeplabv3p_xception65_humanseg module[0m [32m[2020-04-01 22:40:09,100] [ INFO] - Module deeplabv3p_xception65_humanseg already installed in /home/aistudio/.paddlehub/modules/deeplabv3p_xception65_humanseg[0m [32m[2020-04-01 22:40:09,814] [ INFO] - 0 pretrained paramaters loaded by PaddleHub[0m {'origin': 'image/test/test.jpg', 'processed': 'humanseg_output/test.png'}
# 合成函数 def blend_images(fore_image, base_image, output_path): """ 将抠出的人物图像换背景 fore_image: 前景图片,抠出的人物图片 base_image: 背景图片 """ # 读入图片 base_image = Image.open(base_image).convert('RGB') fore_image = Image.open(fore_image).resize(base_image.size) # 图片加权合成 scope_map = np.array(fore_image)[:,:,-1] / 255 scope_map = scope_map[:,:,np.newaxis] scope_map = np.repeat(scope_map, repeats=3, axis=2) res_image = np.multiply(scope_map, np.array(fore_image)[:,:,:3]) + np.multiply((1-scope_map), np.array(base_image)) #保存图片 res_image = Image.fromarray(np.uint8(res_image)) res_image.save(output_path)
output_path_img = output_path + 'blend_res_img.jpg' blend_images('humanseg_output/test.png', 'image/test/bg.jpg', output_path_img) # 展现合成图片 plt.figure(figsize=(10,10)) img = mpimg.imread(output_path_img) plt.imshow(img) plt.axis('off') plt.show()
output_path_img = output_path + 'blend_res_img2.jpg' blend_images('humanseg_output/test.png', 'image/test/bg1.jpg', output_path_img) # 展现合成图片 plt.figure(figsize=(10,10)) img = mpimg.imread(output_path_img) plt.imshow(img) plt.axis('off') plt.show()
# 完整流程来一张 test_img_path = ["xcd.jpg"] test_img_path = [test_path + img for img in test_img_path] img = mpimg.imread(test_img_path[0]) module = hub.Module(name="deeplabv3p_xception65_humanseg") input_dict = {"image": test_img_path} # execute predict and print the result results = module.segmentation(data=input_dict) output_path_img = output_path + 'blend_res_img2.jpg' blend_images('humanseg_output/xcd.png', 'image/test/bg.jpg', output_path_img) # 展现合成图片 plt.figure(figsize=(10,10)) img = mpimg.imread(output_path_img) plt.imshow(img) plt.axis('off') plt.show()
[32m[2020-04-01 22:40:28,805] [ INFO] - Installing deeplabv3p_xception65_humanseg module[0m [32m[2020-04-01 22:40:28,821] [ INFO] - Module deeplabv3p_xception65_humanseg already installed in /home/aistudio/.paddlehub/modules/deeplabv3p_xception65_humanseg[0m [32m[2020-04-01 22:40:29,497] [ INFO] - 0 pretrained paramaters loaded by PaddleHub[0m
def create_gif(gif_name, path, duration=0.3): ''' 生成gif文件,原始图片仅支持png格式 gif_name : 字符串,所生成的 gif 文件名,带 .gif 后缀 path : 须要合成为 gif 的图片所在路径 duration : gif 图像时间间隔 ''' frames = [] pngFiles = os.listdir(path) image_list = [os.path.join(path, f) for f in pngFiles] for image_name in image_list: frames.append(imageio.imread(image_name)) # 保存为 gif imageio.mimsave(gif_name, frames, 'GIF', duration=duration) return def split_gif(gif_name, output_path, resize=False): ''' 拆分gif文件,生成png格式,便于生成 gif_name : gif 文件路径,带 .gif 后缀 path : 拆分图片所在路径 ''' gif_file = Image.open(gif_name) name = gif_name.split('/')[-1].split('.')[0] if not os.path.exists(output_path): # 判断该文件夹是否存在,若是存在再建立则会报错 os.mkdir(output_path) for i, frame in enumerate(ImageSequence.Iterator(gif_file), 1): if resize: frame = frame.resize((300, 168), Image.ANTIALIAS) frame.save('%s/%s_%d.png' % (output_path, name, i)) # 保存在等目录的output文件夹下 def plot_sequence_images(image_array): ''' Display images sequence as an animation in jupyter notebook Args: image_array(numpy.ndarray): image_array.shape equal to (num_images, height, width, num_channels) ''' dpi = 72.0 xpixels, ypixels = image_array[0].shape[:2] fig = plt.figure(figsize=(ypixels/dpi, xpixels/dpi), dpi=dpi) im = plt.figimage(image_array[0]) def animate(i): im.set_array(image_array[i]) return (im,) anim = animation.FuncAnimation(fig, animate, frames=len(image_array), interval=500, repeat_delay=1, repeat=True) display(HTML(anim.to_html5_video()))
# 拆GIF文件为png帧 split_gif('image/test_gif/wushu.gif', 'image/test_gif/wushu_frame', True) imgs = [] for i, fname in enumerate(os.listdir('image/test_gif/wushu_frame')): img = cv2.imread('image/test_gif/wushu_frame/' + fname) img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) imgs.append(img_rgb) plot_sequence_images(imgs)
# 测试图片路径和输出路径 test_path = 'image/test_gif/wushu_frame/' output_path = 'image/blend_out/' # 待预测图片 test_img_path = os.listdir(test_path) test_img_path = [test_path + i for i in test_img_path] img = mpimg.imread(test_img_path[0]) # 展现待预测图片 plt.figure(figsize=(10,10)) plt.imshow(img) plt.axis('off') plt.show()
input_dict = {"image": test_img_path} # execute predict and print the result results = module.segmentation(data=input_dict) # 预测结果展现 out_img_path = 'humanseg_output/' + os.path.basename(test_img_path[0]).split('.')[0] + '.png' img = mpimg.imread(out_img_path) plt.figure(figsize=(10,10)) plt.imshow(img) plt.axis('off') plt.show()
# 合成图片 humanseg_wushu = [filename for filename in os.listdir('humanseg_output/') if filename.startswith("wushu")] for i, img in enumerate(humanseg_wushu): img_path = os.path.join('humanseg_output/wushu_%d.png' % (i+1)) output_path_img = output_path + 'wushu/%d.png' % i blend_images(img_path, 'image/test/bg1.jpg', output_path_img)
# 合成GIF create_gif('image/blend_out/blend_res_wushu.gif', 'image/blend_out/wushu/', duration=0.5) imgs = [] for i, fname in enumerate(os.listdir('image/blend_out/wushu/')): img = cv2.imread('image/blend_out/wushu/' + fname) img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) imgs.append(img_rgb) plot_sequence_images(imgs)
结果上传不了,可见原项目连接。ide
有时间再写……函数
原项目连接: PaddleHub创意赛:AI人像抠图及图像合成