# 用列表推导式作下列小题 # 1.过滤掉长度小于3的字符串列表,并将剩下的转换成大写字母 l1 = ['string', 'str', 'st'] li = [i.upper() for i in l1 if len(i) < 3] # 2.求(x,y)其中x是0-5之间的偶数,y是0-5之间的奇数组成的元祖列表 li = [(x, y) for x in range(0, 6, 2) for y in range(1, 6, 2)] print(li) # 3.求M中3,6,9组成的列表M = [[1,2,3],[4,5,6],[7,8,9]] M = [[1,2,3],[4,5,6],[7,8,9]] li = [i[2] for i in M] print(li) # 4.求出50之内能被3整除的数的平方,并放入到一个列表中。 li = [i ** 2 for i in range(1, 50) if i % 3 == 0] print(li) # 5.构建一个列表:['python1期', 'python2期', 'python3期', 'python4期', 'python6期', 'python7期', 'python8期', 'python9期', 'python10期'] li = [f'python{i}期' for i in range(1, 11)] print(li) # 6.构建一个列表:[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)] li = [(i, i + 1) for i in range(6)] print(li) # 7.构建一个列表:[0, 2, 4, 6, 8, 10, 12, 14, 16, 18] li = [i for i in range(0, 20, 2)] print(li) # 8.有一个列表l1 = ['alex', 'WuSir', '老男孩', '太白']将其构形成这种列表['alex0', 'WuSir1', '老男孩2', '太白3'] l1 = ['alex', 'WuSir', '老男孩', '太白'] li = [l1[i] + str(i) for i in range(len(l1))] print(li) # 9.有如下数据类型: # x = {'name':'alex', # 'Values':[{'timestamp':1517991992.94,'values':100,}, # {'timestamp': 1517992000.94,'values': 200,}, # {'timestamp': 1517992014.94,'values': 300,}, # {'timestamp': 1517992744.94,'values': 350}, # {'timestamp': 1517992800.94,'values': 280}],} # 将上面的数据经过列表推导式转换成下面的类型:[[1517991992.94, 100], [1517992000.94, 200], [1517992014.94, 300], [1517992744.94, 350], [1517992800.94, 280]] x = {'name':'alex', 'Values': [{'timestamp':1517991992.94,'values':100,}, {'timestamp': 1517992000.94,'values': 200,}, {'timestamp': 1517992014.94,'values': 300,}, {'timestamp': 1517992744.94,'values': 350}, {'timestamp': 1517992800.94,'values': 280}], } li = [[x['Values'][i]['timestamp'], x['Values'][i]['values']] for i in range(len(x['Values']))] print(li) # 10.用列表完成笛卡尔积 # 什么是笛卡尔积? 笛卡尔积就是一个列表,列表里面的元素是由输入的可迭代类型的元素对构成的元组,所以笛卡尔积列表的长度等于输入变量的长度的乘积。 magnitude_1 = input('PLS input magnitude 1:\n').split() magnitude_2 = input('PLS input magnitude 2:\n').split() cartesian = [(x, y) for x in magnitude_1 for y in magnitude_2] print(cartesian) # 11. 构建一个列表,列表里面是三种不一样尺寸的T恤衫,每一个尺寸都有两个颜色(列表里面的元素为元组类型)。 # colors = ['black', 'white'] # sizes = ['S', 'M', 'L'] colors = ['black', 'white'] sizes = ['S', 'M', 'L'] li = [(color, size) for color in colors for size in sizes] print(li) # 12. 构建一个列表,列表里面的元素是扑克牌除去大小王之后,全部的牌类(列表里面的元素为元组类型)。 # l1 = [('A','spades'),('A','diamonds'), ('A','clubs'), ('A','hearts')......('K','spades'),('K','diamonds'), ('K','clubs'), ('K','hearts') ] l1 = ['A'] + [str(i) for i in range(2, 11)] + list('JQK') l2 = ['spades', 'diamonds', 'clubs', 'hearts'] li = [(l1[i], l2[j]) for i in range(len(l1)) for j in range(len(l2))] print(li) # 13.简述一下yield 与yield from的区别。 # yield 定义生成器函数 # yield from 也是定义生成器函数,可是它能够将列表变成迭代器返回 # 14.看下面代码,可否对其简化?说说你简化后的优势? # def chain(*iterables): # for it in iterables: # for i in it: # yield i # # # g = chain('abc', (0, 1, 2)) # print(list(g)) # 将迭代器转化成列表 # 优化内层循环,提升效率 def chain(*iterables): for it in iterables: yield from it g = chain('abc', (0, 1, 2)) print(list(g)) # 15.看代码求结果(面试题): # v = [i % 2 for i in range(10)] # print(v) # v = (i % 2 for i in range(10)) # print(v) # for i in range(5): # print(i) # print(i) # result: # [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # <generator object <genexpr> at 0x000002A8A63CD0F8> # 0 # 1 # 2 # 3 # 4 # 4 # 16.看代码求结果:(面试题)*** def demo(): for i in range(4): yield i g = demo() # <generator object demo at 0x000001F272E146D0> g1 = (i for i in g) # <generator object <genexpr> at 0x0000021B6AB8D0F8> g2 = (i for i in g1) # <generator object <genexpr> at 0x0000023A615547D8> print(list(g1)) # print(list((i for i in demo()))) print(list(g2)) # generator 'g1' StopIteration # result: # [0, 1, 2, 3] # [] # 17.看代码求结果:(面试题)***** def add(n, i): return n + i def test(): for i in range(4): yield i g = test() for n in [1, 10]: g = (add(n, i) for i in g) print(list(g)) # result: # [20, 21, 22, 23] # 题目能够理解为: # g = test() # n = 1 # g = (add(n, i) for i in g) # n = 10 # g = (add(n, i) for i in g) # print(list(g)) # list((add(10, i) for i in (add(10, i) for i in test)))) # 这时候才开始执行g迭代器两次,但是这时候n已经定义为10,因此至关于在n为10时读取迭代器