十种常见排序算法能够分为两大类:git
比较类排序:经过比较来决定元素间的相对次序,因为其时间复杂度不能突破O(nlogn),所以也称为非线性时间比较类排序。web
非比较类排序:不经过比较来决定元素间的相对次序,它能够突破基于比较排序的时间下界,以线性时间运行,所以也称为线性时间非比较类排序。 算法
稳定:若是a本来在b前面,而a=b,排序以后a仍然在b的前面。api
不稳定:若是a本来在b的前面,而a=b,排序以后 a 可能会出如今 b 的后面。数组
时间复杂度:对排序数据的总的操做次数。反映当n变化时,操做次数呈现什么规律。数据结构
空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。架构
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,若是他们的顺序错误就把他们交换过来。走访数列的工做是重复地进行直到没有再须要交换,也就是说该数列已经排序完成。这个算法的名字由来是由于越小的元素会经由交换慢慢“浮”到数列的顶端。ide
做为最简单的排序算法之一,冒泡排序给个人感受就像 Abandon 在单词书里出现的感受同样,每次都在第一页第一位,因此最熟悉。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证实该序列已经有序。但这种改进对于提高性能来讲并无什么太大做用。函数
一、算法步骤oop
比较相邻的元素。若是第一个比第二个大,就交换他们两个。
对每一对相邻元素做一样的工做,从开始第一对到结尾的最后一对。这步作完后,最后的元素会是最大的数。
针对全部的元素重复以上的步骤,除了最后一个。
持续每次对愈来愈少的元素重复上面的步骤,直到没有任何一对数字须要比较。
二、动图演示
三、何时最快
当输入的数据已是正序时(都已是正序了,我还要你冒泡排序有何用啊)。
四、何时最慢
当输入的数据是反序时(写一个 for 循环反序输出数据不就好了,干吗要用你冒泡排序呢,我是闲的吗)。
五、Java 代码实现
public class BubbleSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); for (int i = 1; i < arr.length; i++) { // 设定一个标记,若为true,则表示这次循环没有进行交换,也就是待排序列已经有序,排序已经完成。 boolean flag = true; for (int j = 0; j < arr.length - i; j++) { if (arr[j] > arr[j + 1]) { int tmp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = tmp; flag = false; } } if (flag) { break; } } return arr; } }
选择排序是一种简单直观的排序算法,不管什么数据进去都是 O(n²) 的时间复杂度。因此用到它的时候,数据规模越小越好。惟一的好处可能就是不占用额外的内存空间了吧。
一、算法步骤
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
再从剩余未排序元素中继续寻找最小(大)元素,而后放到已排序序列的末尾。
重复第二步,直到全部元素均排序完毕。
二、动图演示
三、Java 代码实现
public class SelectionSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); // 总共要通过 N-1 轮比较 for (int i = 0; i < arr.length - 1; i++) { int min = i; // 每轮须要比较的次数 N-i for (int j = i + 1; j < arr.length; j++) { if (arr[j] < arr[min]) { // 记录目前能找到的最小值元素的下标 min = j; } } // 将找到的最小值和i位置所在的值进行交换 if (i != min) { int tmp = arr[i]; arr[i] = arr[min]; arr[min] = tmp; } } return arr; } }
插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,由于只要打过扑克牌的人都应该可以秒懂。插入排序是一种最简单直观的排序算法,它的工做原理是经过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序和冒泡排序同样,也有一种优化算法,叫作拆半插入。
一、算法步骤
将第一待排序序列第一个元素看作一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
从头至尾依次扫描未排序序列,将扫描到的每一个元素插入有序序列的适当位置。(若是待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)
2. 动图演示
三、Java 代码实现
public class InsertSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); // 从下标为1的元素开始选择合适的位置插入,由于下标为0的只有一个元素,默认是有序的 for (int i = 1; i < arr.length; i++) { // 记录要插入的数据 int tmp = arr[i]; // 从已经排序的序列最右边的开始比较,找到比其小的数 int j = i; while (j > 0 && tmp < arr[j - 1]) { arr[j] = arr[j - 1]; j--; } // 存在比其小的数,插入 if (j != i) { arr[j] = tmp; } } return arr; } }
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。
希尔排序是基于插入排序的如下两点性质而提出改进方法的:
插入排序在对几乎已经排好序的数据操做时,效率高,便可以达到线性排序的效率;
但插入排序通常来讲是低效的,由于插入排序每次只能将数据移动一位;
希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。
一、算法步骤
选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
按增量序列个数 k,对序列进行 k 趟排序;
每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列做为一个表来处理,表长度即为整个序列的长度。
二、Java 代码实现
public class ShellSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int gap = 1; while (gap < arr.length) { gap = gap * 3 + 1; } while (gap > 0) { for (int i = gap; i < arr.length; i++) { int tmp = arr[i]; int j = i - gap; while (j >= 0 && arr[j] > tmp) { arr[j + gap] = arr[j]; j -= gap; } arr[j + gap] = tmp; } gap = (int) Math.floor(gap / 3); } return arr; } }
归并排序(Merge sort)是创建在归并操做上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个很是典型的应用。
做为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
自上而下的递归(全部递归的方法均可以用迭代重写,因此就有了第 2 种方法);
自下而上的迭代;
在《数据结构与算法 JavaScript 描述》中,做者给出了自下而上的迭代方法。可是对于递归法,做者却认为:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中这种方式不太可行,由于这个算法的递归深度对它来说太深了。
说实话,我不太理解这句话。意思是 JavaScript 编译器内存过小,递归太深容易形成内存溢出吗?还望有大神可以指教。
和选择排序同样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,由于始终都是 O(nlogn) 的时间复杂度。代价是须要额外的内存空间。
一、算法步骤
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
设定两个指针,最初位置分别为两个已经排序序列的起始位置;
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
重复步骤 3 直到某一指针达到序列尾;
将另外一序列剩下的全部元素直接复制到合并序列尾。
二、动图演示
三、Java 代码实现
public class MergeSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); if (arr.length < 2) { return arr; } int middle = (int) Math.floor(arr.length / 2); int[] left = Arrays.copyOfRange(arr, 0, middle); int[] right = Arrays.copyOfRange(arr, middle, arr.length); return merge(sort(left), sort(right)); } protected int[] merge(int[] left, int[] right) { int[] result = new int[left.length + right.length]; int i = 0; while (left.length > 0 && right.length > 0) { if (left[0] <= right[0]) { result[i++] = left[0]; left = Arrays.copyOfRange(left, 1, left.length); } else { result[i++] = right[0]; right = Arrays.copyOfRange(right, 1, right.length); } } while (left.length > 0) { result[i++] = left[0]; left = Arrays.copyOfRange(left, 1, left.length); } while (right.length > 0) { result[i++] = right[0]; right = Arrays.copyOfRange(right, 1, right.length); } return result; } }
快速排序是由东尼·霍尔所发展的一种排序算法。在平均情况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏情况下则须要 Ο(n2) 次比较,但这种情况并不常见。事实上,快速排序一般明显比其余 Ο(nlogn) 算法更快,由于它的内部循环(inner loop)能够在大部分的架构上颇有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。
快速排序的名字起的是简单粗暴,由于一听到这个名字你就知道它存在的意义,就是快,并且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),可是人家就是优秀,在大多数状况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,但是这是为何呢,我也不知道。好在个人强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:
快速排序的最坏运行状况是 O(n²),好比说顺序数列的快排。但它的平摊指望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小不少。因此,对绝大多数顺序性较弱的随机数列而言,快速排序老是优于归并排序。
一、算法步骤
从数列中挑出一个元素,称为 “基准”(pivot);
从新排序数列,全部元素比基准值小的摆放在基准前面,全部元素比基准值大的摆在基准的后面(相同的数能够到任一边)。在这个分区退出以后,该基准就处于数列的中间位置。这个称为分区(partition)操做;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,可是这个算法总会退出,由于在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
二、动图演示
三、Java 代码实现
public class QuickSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); return quickSort(arr, 0, arr.length - 1); } private int[] quickSort(int[] arr, int left, int right) { if (left < right) { int partitionIndex = partition(arr, left, right); quickSort(arr, left, partitionIndex - 1); quickSort(arr, partitionIndex + 1, right); } return arr; } private int partition(int[] arr, int left, int right) { // 设定基准值(pivot) int pivot = left; int index = pivot + 1; for (int i = index; i <= right; i++) { if (arr[i] < arr[pivot]) { swap(arr, i, index); index++; } } swap(arr, pivot, index - 1); return index - 1; } private void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } }
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似彻底二叉树的结构,并同时知足堆积的性质:即子结点的键值或索引老是小于(或者大于)它的父节点。堆排序能够说是一种利用堆的概念来排序的选择排序。分为两种方法:
大顶堆:每一个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
小顶堆:每一个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;
堆排序的平均时间复杂度为 Ο(nlogn)。
一、算法步骤
建立一个堆 H[0……n-1];
把堆首(最大值)和堆尾互换;
把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
重复步骤 2,直到堆的尺寸为 1。
二、动图演示
三、Java 代码实现
public class HeapSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int len = arr.length; buildMaxHeap(arr, len); for (int i = len - 1; i > 0; i--) { swap(arr, 0, i); len--; heapify(arr, 0, len); } return arr; } private void buildMaxHeap(int[] arr, int len) { for (int i = (int) Math.floor(len / 2); i >= 0; i--) { heapify(arr, i, len); } } private void heapify(int[] arr, int i, int len) { int left = 2 * i + 1; int right = 2 * i + 2; int largest = i; if (left < len && arr[left] > arr[largest]) { largest = left; } if (right < len && arr[right] > arr[largest]) { largest = right; } if (largest != i) { swap(arr, i, largest); heapify(arr, largest, len); } } private void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } }
计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。做为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有肯定范围的整数。
一、动图演示
二、Java 代码实现
public class CountingSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int maxValue = getMaxValue(arr); return countingSort(arr, maxValue); } private int[] countingSort(int[] arr, int maxValue) { int bucketLen = maxValue + 1; int[] bucket = new int[bucketLen]; for (int value : arr) { bucket[value]++; } int sortedIndex = 0; for (int j = 0; j < bucketLen; j++) { while (bucket[j] > 0) { arr[sortedIndex++] = j; bucket[j]--; } } return arr; } private int getMaxValue(int[] arr) { int maxValue = arr[0]; for (int value : arr) { if (maxValue < value) { maxValue = value; } } return maxValue; } }
桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的肯定。为了使桶排序更加高效,咱们须要作到这两点:
在额外空间充足的状况下,尽可能增大桶的数量
使用的映射函数可以将输入的 N 个数据均匀的分配到 K 个桶中
同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响相当重要。
一、何时最快
当输入的数据能够均匀的分配到每个桶中。
二、何时最慢
当输入的数据被分配到了同一个桶中。
三、Java 代码实现
public class BucketSort implements IArraySort { private static final InsertSort insertSort = new InsertSort(); @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); return bucketSort(arr, 5); } private int[] bucketSort(int[] arr, int bucketSize) throws Exception { if (arr.length == 0) { return arr; } int minValue = arr[0]; int maxValue = arr[0]; for (int value : arr) { if (value < minValue) { minValue = value; } else if (value > maxValue) { maxValue = value; } } int bucketCount = (int) Math.floor((maxValue - minValue) / bucketSize) + 1; int[][] buckets = new int[bucketCount][0]; // 利用映射函数将数据分配到各个桶中 for (int i = 0; i < arr.length; i++) { int index = (int) Math.floor((arr[i] - minValue) / bucketSize); buckets[index] = arrAppend(buckets[index], arr[i]); } int arrIndex = 0; for (int[] bucket : buckets) { if (bucket.length <= 0) { continue; } // 对每一个桶进行排序,这里使用了插入排序 bucket = insertSort.sort(bucket); for (int value : bucket) { arr[arrIndex++] = value; } } return arr; } /** * 自动扩容,并保存数据 * * @param arr * @param value */ private int[] arrAppend(int[] arr, int value) { arr = Arrays.copyOf(arr, arr.length + 1); arr[arr.length - 1] = value; return arr; } }
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不一样的数字,而后按每一个位数分别比较。因为整数也能够表达字符串(好比名字或日期)和特定格式的浮点数,因此基数排序也不是只能使用于整数。
1)基数排序 vs 计数排序 vs 桶排序
基数排序有两种方法:
这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差别:
基数排序:根据键值的每位数字来分配桶;
计数排序:每一个桶只存储单一键值;
桶排序:每一个桶存储必定范围的数值;
2)LSD 基数排序动图演示
三、Java 代码实现
/** * 基数排序 * 考虑负数的状况还能够参考: https://code.i-harness.com/zh-CN/q/e98fa9 */ public class RadixSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int maxDigit = getMaxDigit(arr); return radixSort(arr, maxDigit); } /** * 获取最高位数 */ private int getMaxDigit(int[] arr) { int maxValue = getMaxValue(arr); return getNumLenght(maxValue); } private int getMaxValue(int[] arr) { int maxValue = arr[0]; for (int value : arr) { if (maxValue < value) { maxValue = value; } } return maxValue; } protected int getNumLenght(long num) { if (num == 0) { return 1; } int lenght = 0; for (long temp = num; temp != 0; temp /= 10) { lenght++; } return lenght; } private int[] radixSort(int[] arr, int maxDigit) { int mod = 10; int dev = 1; for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) { // 考虑负数的状况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10) int[][] counter = new int[mod * 2][0]; for (int j = 0; j < arr.length; j++) { int bucket = ((arr[j] % mod) / dev) + mod; counter[bucket] = arrayAppend(counter[bucket], arr[j]); } int pos = 0; for (int[] bucket : counter) { for (int value : bucket) { arr[pos++] = value; } } } return arr; } /** * 自动扩容,并保存数据 * * @param arr * @param value */ private int[] arrayAppend(int[] arr, int value) { arr = Arrays.copyOf(arr, arr.length + 1); arr[arr.length - 1] = value; return arr; } }