JavaShuo
栏目
标签
对于DAN方法的解读-Learning Transferable Features with Deep Adaptation Networks
时间 2020-12-23
标签
迁移学习
神经网络
图像分类
繁體版
原文
原文链接
上周汇报了该篇经典文章,现在回顾并且记录一下自己对DAN方法的理解 深度适配网络-DAN 《利用深度适应网络学习可迁移特征》 下面分为五个部分来讲解: 一. 研究背景 二. 本论文所解决的问题 三. DAN 方法 四. 实验部分 五. 结合自己的论文 一.研究背景 精简的说, 研究表明:深度 神经网络可以学习可迁移特征,这些特征用于域适应时在新的任务上表现出很好的泛化能力。然而由于深度特征随着网
>>阅读原文<<
相关文章
1.
Learning Transferable Features with Deep Adaptation Networks
2.
翻译“Learning Transferable Features with Deep Adaptation Networks”
3.
How transferable are features in deep nerual networks? 【paper review】
4.
How transferable are features in deep neural networks?
5.
[解读] Deep Clustering for Unsupervised Learning of Visual Features
6.
Unsupervised Domain Adaptation with Residual Transfer Networks(2017)
7.
Dense biased networks with deep priori anatomy and hard region adaptation: Semi-supervised learning
8.
How transferable are features in deep neural networks? 论文笔记
9.
论文笔记:How transferable are features in deep neural networks?
10.
论文阅读笔记(四十):Learning Spatiotemporal Features with 3D Convolutional Networks(C3D)
更多相关文章...
•
C# 文本文件的读写
-
C#教程
•
C# 二进制文件的读写
-
C#教程
•
JDK13 GA发布:5大特性解读
•
☆基于Java Instrument的Agent实现
相关标签/搜索
Deep Learning
networks
dan
adaptation
features
learning
deep
解决方法
对于
对方
PHP教程
Hibernate教程
MyBatis教程
算法
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
css 让chrome支持小于12px的文字
2.
集合的一点小总结
3.
ejb
4.
Selenium WebDriver API
5.
人工智能基础,我的看法
6.
Non-local Neural及Self-attention
7.
Hbuilder 打开iOS真机调试操作
8.
improved open set domain adaptation with backpropagation 学习笔记
9.
Chrome插件 GitHub-Chart Commits3D直方图视图
10.
CISCO ASAv 9.15 - 体验思科上一代防火墙
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Learning Transferable Features with Deep Adaptation Networks
2.
翻译“Learning Transferable Features with Deep Adaptation Networks”
3.
How transferable are features in deep nerual networks? 【paper review】
4.
How transferable are features in deep neural networks?
5.
[解读] Deep Clustering for Unsupervised Learning of Visual Features
6.
Unsupervised Domain Adaptation with Residual Transfer Networks(2017)
7.
Dense biased networks with deep priori anatomy and hard region adaptation: Semi-supervised learning
8.
How transferable are features in deep neural networks? 论文笔记
9.
论文笔记:How transferable are features in deep neural networks?
10.
论文阅读笔记(四十):Learning Spatiotemporal Features with 3D Convolutional Networks(C3D)
>>更多相关文章<<