JavaShuo
栏目
标签
Unsupervised Domain Adaptation with Residual Transfer Networks(2017)
时间 2021-01-02
标签
机器学习
栏目
HTML
繁體版
原文
原文链接
introduction 作者认为,domain adaption(域适应)方法旨在通过学习domain-invariant feature(域不变特征)来桥接source domain和target domain,从而能够在target domain没有标签的情况下,利用source domain所学到的分类器对target domain进行预测。 现在已经可以将domain adaption嵌
>>阅读原文<<
相关文章
1.
Unsupervised domain adaptation with residual transfer networks(NIPS 2016)
2.
[cvpr2017]Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
3.
CVPR2019 Transferrable Prototypical Networks for Unsupervised Domain Adaptation
4.
迁移学习-PixelDA-Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
5.
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
6.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
7.
Image-Image Domain Adaptation with Preserved Self-Similarity andDomain-Dissimilarity for Person Re-i
8.
Unsupervised Domain Adaptation by Backpropagation(2015)
9.
Domain Adaptation总结(2017.9)
10.
【Transfer Learning】Adversarial Discriminative Domain Adaptation
更多相关文章...
•
ASP Transfer 方法
-
ASP 教程
•
XSLT
元素
-
XSLT 教程
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
•
Tomcat学习笔记(史上最全tomcat学习笔记)
相关标签/搜索
networks
adaptation
residual
unsupervised
transfer
domain
concurrenthashmap#transfer
with+this
with...connect
HTML
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
「插件」Runner更新Pro版,帮助设计师远离996
2.
错误 707 Could not load file or assembly ‘Newtonsoft.Json, Version=12.0.0.0, Culture=neutral, PublicKe
3.
Jenkins 2018 报告速览,Kubernetes使用率跃升235%!
4.
TVI-Android技术篇之注解Annotation
5.
android studio启动项目
6.
Android的ADIL
7.
Android卡顿的检测及优化方法汇总(线下+线上)
8.
登录注册的业务逻辑流程梳理
9.
NDK(1)创建自己的C/C++文件
10.
小菜的系统框架界面设计-你的评估是我的决策
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Unsupervised domain adaptation with residual transfer networks(NIPS 2016)
2.
[cvpr2017]Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
3.
CVPR2019 Transferrable Prototypical Networks for Unsupervised Domain Adaptation
4.
迁移学习-PixelDA-Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
5.
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
6.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
7.
Image-Image Domain Adaptation with Preserved Self-Similarity andDomain-Dissimilarity for Person Re-i
8.
Unsupervised Domain Adaptation by Backpropagation(2015)
9.
Domain Adaptation总结(2017.9)
10.
【Transfer Learning】Adversarial Discriminative Domain Adaptation
>>更多相关文章<<