损失函数梯度对比-均方差和交叉熵

前言 我们都知道在机器学习中,希望算法或者网络收敛更快,有些是对数据预处理,尤其是Batch Normalization,有些是采用不同的激活函数,尤其是Relu激活函数取得了巨大的成功,还有一种加速收敛方法是更换损失函数。本博客就是针对均方差损失(MSE)和交叉熵损失的收敛速度做一个推导,当然少不了参考他人博客啦,但是参考归参考,重在自己推导一遍。 国际惯例,来一波地址 人工神经网络——【BP】
相关文章
相关标签/搜索