通常批处理(一个文件 或者一批文件),无论文件多大,都是能够度量 java
mapreduce hive sparkcore sparksqlsql
源源不断的流水同样 (流数据)shell
Storm SparkStreamingapache
消息 Messagebootstrap
队列 Queue安全
消息队列 MQ服务器
消息队列(Queue)、主题(Topic)、发布者(Publisher)、订阅者(Subscriber)网络
每一个消息能够有多个消费者,彼此互不影响。好比我发布一个微博:关注个人人都可以看到。分布式
高吞吐量工具
持久性
分布式
一个消息队列须要哪些部分?
Topic(主题)
Broker (消息代理)
Partition (物理上的分区)
Message (消息)
准备kafka
解压kafka
重命名
配置环境变量
export KAFKA_HOME=/opt/kafka export PATH=$PATH:$KAFKA_HOME/bin
编辑server.properties
broker.id=1 log.dirs=/opt/kafka/logs zookeeper.connect=uplooking03:2181,uplooking04:2181,uplooking05:2181 listeners=PLAINTEXT://:9092
启动kafka-server服务
kafka-server-start.sh [-daemon] server.properties
中止kafka服务
kafka-server-stop.sh
只须要在每一个机器上修改对应的 ==broker.id=1== 便可
建立topic
kafka-topics.sh --create --topic t1 --partitions 3 --replication-factor 1 --zookeeper uplooking03:2181,uplooking04:2181
==注意: 建立topic过程的问题,replication-factor个数不能超过brokerserver的个数==
查看topic
kafka-topics.sh --list --zookeeper uplooking03
查看具体topic的详情
kafka-topics.sh --describe --topic t1 --zookeeper uplooking04:2181
PartitionCount:topic对应的partition的个数 ReplicationFactor:topic对应的副本因子,说白就是副本个数 Partition:partition编号,从0开始递增 Leader:当前partition起做用的breaker.id Replicas: 当前副本数据存在的breaker.id,是一个列表,排在最前面的其做用 Isr:当前kakfa集群中可用的breaker.id列表
修改topic(不能修改replication-factor,以及只能对partition个数进行增长,不能减小 )
kafka-topics.sh --alter --topic t1 --partitions 4 --zookeeper uplooking03
删除Topic
kafka-topics.sh --delete --topic t1 --zookeeper uplooking03
ps:这种删除只是标记删除,要想完全删除必须设置一个属性,在server.properties中配置delete.topic.enable=true,不然只是标记删除
配置完成以后,须要重启kafka服务
kafka-console-producer.sh --topic t1 --broker-list uplooking03:9092,uploo king04:9092,uplooking05:9092
kafka-console-consumer.sh --zookeeper uplooking03 --topic t1
--from-beginning:从头开始消费 --blacklist:黑名单过滤(kafka-console-consumer.sh --zookeeper uplooking03 --blacklist t1,t3) --whitelist:白名单过滤(kafka-console-consumer.sh --zookeeper uplooking03 --whitelist t2) ps:--topic|--blacklist|--whitelist 只能出现其中一个
配置flume的agent配置文件
touch flume-kafka.properties
# 对各个组件的描述说明 # 其中a1为agent的名字 # r1是a1的source的代号名字 # c1是a1的channel的代号名字 # k1是a1的sink的代号名字 ############################################ a1.sources = r1 a1.sinks = k1 a1.channels = c1 # 用于描述source的,类型是netcat网络 a1.sources.r1.type = netcat # source监听的网络ip地址和端口号 a1.sources.r1.bind = uplooking01 a1.sources.r1.port = 44444 # 用于描述sink,类型是kafka a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink a1.sinks.k1.topic = hadoop a1.sinks.k1.brokerList = uplooking03:9092,uplooking04:9092,uplooking05:9092 a1.sinks.k1.requiredAcks = 1 a1.sinks.k1.batchSize = 2 # 用于描述channel,在内存中作数据的临时的存储 a1.channels.c1.type = memory # 该内存中最大的存储容量,1000个events事件 a1.channels.c1.capacity = 1000 # 可以同时对100个events事件监管事务 a1.channels.c1.transactionCapacity = 100 # 将a1中的各个组件创建关联关系,将source和sink都指向了同一个channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
启动flume开始采集数据
[root@uplooking01:/opt/flume/conf] flume-ng agent --name a1 --conf-file flume-kafka.properties
开启Kafka消息消费工具
[root@uplooking03:/opt/flume/conf] kafka-console-consumer.sh --zookeeper uplooking03 --topic hadoop
给flume监听的Source发送数据
[root@uplooking03:/] nc uplooking01 44444
<dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.10</artifactId> <version>0.10.0.1</version> </dependency>
建立生产者的配置文件 producer.properties
bootstrap.servers=uplooking03:9092,uplooking04:9092,uplooking05:9092 key.serializer=org.apache.kafka.common.serialization.StringSerializer value.serializer=org.apache.kafka.common.serialization.StringSerializer
建立生产者而且发送数据到topic中
public class MyKafkaProducer { public static void main(String[] args) throws IOException { Properties prop = new Properties(); prop.load(MyKafkaProducer.class.getClassLoader().getResourceAsStream("producer.properties")); KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(prop); kafkaProducer.send(new ProducerRecord<String, String>("hadoop", "name", "admin123")); kafkaProducer.close(); } }
建立消费者的配置文件consumer.properties
zookeeper.connect=uplooking03:2181,uplooking04:2181,uplooking05:2181 group.id=test-consumer-group bootstrap.servers=uplooking03:9092,uplooking04:9092,uplooking05:9092 key.deserializer=org.apache.kafka.common.serialization.StringDeserializer value.deserializer=org.apache.kafka.common.serialization.StringDeserializer
建立消息消费者消费topic中的数据
public static void main(String[] args) throws Exception { Properties prop = new Properties(); prop.load(MyKafkaConsumer.class.getClassLoader().getResourceAsStream("consumer.properties")); KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(prop); Collection topics = new ArrayList(); topics.add("hadoop"); kafkaConsumer.subscribe(topics); while (true) { ConsumerRecords<String, String> records = kafkaConsumer.poll(1000); for (ConsumerRecord<String, String> record : records) { System.out.println(record.value()); } } }
自定义分区(MyCustomPartition)
package com.uplooking.bigdata.kafka.partition; public class MyCustomPartition implements Partitioner { public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { //获取分区数, 分区编号通常都是从0开始 int partitionSize = cluster.partitionCountForTopic(topic); int keyHash = Math.abs(key.hashCode()); int valueHash = Math.abs(value.hashCode()); return keyHash % partitionSize; } public void close() { } public void configure(Map<String, ?> configs) { } }
配置自定义分区(producer.properties)
partitioner.class=com.uplooking.bigdata.kafka.partition.MyCustomPartition