boost::lockfree是boost1.53引入的无锁数据结构,包括boost::lockfree::stack、boost::lockfree::queue和boost::lockfree::spsc_queue三种,前两种用于多生产者/多消费者场景,第三个用于单生产者/单消费者场景,下面对它们的使用进行详细介绍,以boost::lockfree::stack为例,其余相似。node
boost::lockfree::stack源代码以下(boost 1.65):数组
#ifdef BOOST_NO_CXX11_VARIADIC_TEMPLATES template <typename T, class A0, class A1, class A2> #else template <typename T, typename ...Options> #endif class stack { private: #ifndef BOOST_DOXYGEN_INVOKED BOOST_STATIC_ASSERT(boost::is_copy_constructible<T>::value); #ifdef BOOST_NO_CXX11_VARIADIC_TEMPLATES typedef typename detail::stack_signature::bind<A0, A1, A2>::type bound_args; #else typedef typename detail::stack_signature::bind<Options...>::type bound_args; #endif static const bool has_capacity = detail::extract_capacity<bound_args>::has_capacity; static const size_t capacity = detail::extract_capacity<bound_args>::capacity; static const bool fixed_sized = detail::extract_fixed_sized<bound_args>::value; static const bool node_based = !(has_capacity || fixed_sized); static const bool compile_time_sized = has_capacity; /* 省略 */ public: typedef T value_type; typedef typename implementation_defined::allocator allocator; typedef typename implementation_defined::size_type size_type; //! Construct stack // @{ stack(void): pool(node_allocator(), capacity) { BOOST_ASSERT(has_capacity); initialize(); } template <typename U> explicit stack(typename node_allocator::template rebind<U>::other const & alloc): pool(alloc, capacity) { BOOST_STATIC_ASSERT(has_capacity); initialize(); } explicit stack(allocator const & alloc): pool(alloc, capacity) { BOOST_ASSERT(has_capacity); initialize(); } // @} //! Construct stack, allocate n nodes for the freelist. // @{ explicit stack(size_type n): pool(node_allocator(), n) { BOOST_ASSERT(!has_capacity); initialize(); } template <typename U> stack(size_type n, typename node_allocator::template rebind<U>::other const & alloc): pool(alloc, n) { BOOST_STATIC_ASSERT(!has_capacity); initialize(); }
boost::lockfree::stack的第一个模板参数是元素类型,后面3个参数是用来配置stack的,没有顺序要求:安全
boost::lockfree::fixed_sized<false>
,若是为true,则内部使用数组保存元素,大小不能动态增加;boost::lockfree::fixed_sized<true>
,和运行时指定大小是互斥的,见下面的例子;boost::lockfree::allocator<std::allocator<void>>
。例如:数据结构
//表示动态大小,初始大小为4,用完了再动态增加;此时必须在构造函数指定初始大小,不然断言失败; boost::lockfree::stack<int> s(4); //表示大小固定,运行时指定初始大小为4,用完后再push就会失败;此时必须在构造函数指定初始大小,不然断言失败; boost::lockfree::stack<int, boost::lockfree::fixed_sized<true>> s1(4); //表示大小固定,编译时指定初始大小为4,用完后再push就会失败;此时不能在构造函数指定初始大小,不然断言失败; boost::lockfree::stack<int, boost::lockfree::capacity<4>> s2; //和上面同样,设置了capacity,fixed_size就老是true boost::lockfree::stack<int, boost::lockfree::fixed_size<false>, boost::lockfree::capacity<4>> s3;
bool push(T const & v) bool bounded_push(T const & v) template <typename ConstIterator> ConstIterator push(ConstIterator begin, ConstIterator end) template <typename ConstIterator> ConstIterator bounded_push(ConstIterator begin, ConstIterator end) bool unsynchronized_push(T const & v) ConstIterator unsynchronized_push(ConstIterator begin, ConstIterator end)
bounded_表示不动态增加,当初始大小用完后再push就会失败;
unsynchronized_表示非线程安全;函数
bool pop(T & ret) template <typename U> bool pop(U & ret) bool unsynchronized_pop(T & ret) template <typename U> bool unsynchronized_pop(U & ret)
unsynchronized_表示非线程安全;atom
template <typename Functor> bool consume_one(Functor & f) template <typename Functor> bool consume_one(Functor const & f) template <typename Functor> size_t consume_all(Functor & f) template <typename Functor> size_t consume_all(Functor const & f) template <typename Functor> size_t consume_all_atomic(Functor & f) template <typename Functor> size_t consume_all_atomic(Functor const & f) template <typename Functor> size_t consume_all_atomic_reversed(Functor & f) template <typename Functor> size_t consume_all_atomic_reversed(Functor const & f)
_one表示只消费1个元素;
_all表示消费全部元素;
_atomic表示消费过程是原子的,其间其余操做对其是不可见的。
_reversed表示倒序消费。线程
//预分配空闲节点数,和编译时设置capacity互斥;线程安全,可能阻塞 void reserve(size_type n) //非线程安全 void reserve_unsafe(size_type n) //判断是否为空 bool empty(void) const
#include <boost/lockfree/stack.hpp> int main(int argc, char *argv[]) { boost::lockfree::stack<int> s(64); //producer for (int i = 0; i < 1000; i++) { s.push(i); } //consumer s.consume_all([](int i) { std::cout << i << std::endl; }); return 0; }