论文浅尝 | 当知识图谱遇上零样本学习——零样本学习综述

随着监督学习在机器学习领域取得的巨大发展,如何减少人工在样本方面的处理工作,以及如何使模型快速适应层出不穷的新样本,成为亟待解决的问题。零样本学习(Zero-Shot Learning, ZSL)的提出,则有效地解决了此类问题,它利用样本之间潜在的语义关系,使得模型可以处理一些之前从未处理过的样本,对于探索实现真正的人工智能具有非常重要的意义。而知识图谱作为包含丰富语义知识的一种载体,在零样本学习
相关文章
相关标签/搜索