文本分类实战(三)—— charCNN模型

1 大纲概述html

  文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有如下系列:git

  word2vec预训练词向量github

  textCNN 模型json

  charCNN 模型网络

  Bi-LSTM 模型session

  Bi-LSTM + Attention 模型app

  RCNN 模型dom

  Adversarial LSTM 模型ide

  Transformer 模型函数

  ELMo 预训练模型

  BERT 预训练模型

  全部代码均在textClassifier仓库中。

 

2 数据集

  数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时须要有标签的数据(labeledTrainData),数据预处理如文本分类实战(一)—— word2vec预训练词向量中类似,惟一的不一样是须要保留标点符号,不然模型难以收敛。预处理后的文件为/data/preprocess/labeledCharTrain.csv。

 

3 charCNN 模型结构

  在charCNN论文Character-level Convolutional Networks for Text Classification中提出了6层卷积层 + 3层全链接层的结构,具体结构以下图:

  

  针对不一样大小的数据集提出了两种结构参数:

  1)卷积层

    

  2)全链接层

    

 

4 配置参数

import os
import time
import datetime
import csv
import json
from math import sqrt
import warnings

import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
warnings.filterwarnings("ignore")
# 参数配置

class TrainingConfig(object):
    epoches = 10
    evaluateEvery = 100
    checkpointEvery = 100
    learningRate = 0.001
    

class ModelConfig(object):
    
    # 该列表中子列表的三个元素分别是卷积核的数量,卷积核的高度,池化的尺寸
    convLayers = [[256, 7, 4],
                  [256, 7, 4],
                  [256, 3, 4]]
#                   [256, 3, None],
#                   [256, 3, None],
#                   [256, 3, 3]]
    fcLayers = [512]
    dropoutKeepProb = 0.5
    
    epsilon = 1e-3  # BN层中防止分母为0而加入的极小值
    decay = 0.999  # BN层中用来计算滑动平均的值
    
    
class Config(object):
   # 咱们使用论文中提出的69个字符来表征输入数据 alphabet
= "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}" # alphabet = "abcdefghijklmnopqrstuvwxyz0123456789" sequenceLength = 1014 # 字符表示的序列长度 batchSize = 128 rate = 0.8 # 训练集的比例 dataSource = "../data/preProcess/labeledCharTrain.csv" training = TrainingConfig() model = ModelConfig() config = Config()

 

5 训练数据生成

  1) 加载数据,将全部的句子分割成字符表示

  2) 构建字符-索引映射表,并保存成json的数据格式,方便在inference阶段加载使用

  3)将字符转换成one-hot的嵌入形式,做为模型中embedding层的初始化值。

  4) 将数据集分割成训练集和验证集

# 数据预处理的类,生成训练集和测试集

class Dataset(object):
    def __init__(self, config):
        self._dataSource = config.dataSource
        
        self._sequenceLength = config.sequenceLength
        self._rate = config.rate
        
        self.trainReviews = []
        self.trainLabels = []
        
        self.evalReviews = []
        self.evalLabels = []
        
        self._alphabet = config.alphabet
        self.charEmbedding =None
        
        self._charToIndex = {}
        self._indexToChar = {}
        
    def _readData(self, filePath):
        """
        从csv文件中读取数据集
        """
        
        df = pd.read_csv(filePath)
        labels = df["sentiment"].tolist()
        review = df["review"].tolist()
        reviews = [[char for char in line if char != " "] for line in review]
        
        return reviews, labels

    def _reviewProcess(self, review, sequenceLength, charToIndex):
        """
        将数据集中的每条评论用index表示
        wordToIndex中“pad”对应的index为0
        """
        
        reviewVec = np.zeros((sequenceLength))
        sequenceLen = sequenceLength
        
        # 判断当前的序列是否小于定义的固定序列长度
        if len(review) < sequenceLength:
            sequenceLen = len(review)
            
        for i in range(sequenceLen):
            if review[i] in charToIndex:
                reviewVec[i] = charToIndex[review[i]]
            else:
                reviewVec[i] = charToIndex["UNK"]

        return reviewVec

    def _genTrainEvalData(self, x, y, rate):
        """
        生成训练集和验证集
        """
        
        reviews = []
        labels = []
        
        # 遍历全部的文本,将文本中的词转换成index表示
        
        for i in range(len(x)):
            reviewVec = self._reviewProcess(x[i], self._sequenceLength, self._charToIndex)
            reviews.append(reviewVec)
            
            labels.append([y[i]])
            
        trainIndex = int(len(x) * rate)
        
        trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
        trainLabels = np.array(labels[:trainIndex], dtype="float32")
        
        evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
        evalLabels = np.array(labels[trainIndex:], dtype="float32")

        return trainReviews, trainLabels, evalReviews, evalLabels
        
    def _genVocabulary(self, reviews):
        """
        生成字符向量和字符-索引映射字典
        """
        
        chars = [char for char in self._alphabet]
        
        vocab, charEmbedding = self._getCharEmbedding(chars)
        self.charEmbedding = charEmbedding
        
        self._charToIndex = dict(zip(vocab, list(range(len(vocab)))))
        self._indexToChar = dict(zip(list(range(len(vocab))), vocab))
        
        # 将词汇-索引映射表保存为json数据,以后作inference时直接加载来处理数据
        with open("../data/charJson/charToIndex.json", "w", encoding="utf-8") as f:
            json.dump(self._charToIndex, f)
        
        with open("../data/charJson/indexToChar.json", "w", encoding="utf-8") as f:
            json.dump(self._indexToChar, f)
            
    def _getCharEmbedding(self, chars):
        """
        按照one的形式将字符映射成向量
        """
        
        alphabet = ["UNK"] + [char for char in self._alphabet]
        vocab = ["pad"] + alphabet
        charEmbedding = []
        charEmbedding.append(np.zeros(len(alphabet), dtype="float32"))
        
        for i, alpha in enumerate(alphabet):
            onehot = np.zeros(len(alphabet), dtype="float32")
            
            # 生成每一个字符对应的向量
            onehot[i] = 1
            
            # 生成字符嵌入的向量矩阵
            charEmbedding.append(onehot)
                
        return vocab, np.array(charEmbedding)
            
    def dataGen(self):
        """
        初始化训练集和验证集
        """
        
        # 初始化数据集
        reviews, labels = self._readData(self._dataSource)
        
        # 初始化词汇-索引映射表和词向量矩阵
        self._genVocabulary(reviews)
        
        # 初始化训练集和测试集
        trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviews, labels, self._rate)
        self.trainReviews = trainReviews
        self.trainLabels = trainLabels
        
        self.evalReviews = evalReviews
        self.evalLabels = evalLabels
        
        
data = Dataset(config)
data.dataGen()

 

 6 生成batch数据集

# 输出batch数据集

def nextBatch(x, y, batchSize):
        """
        生成batch数据集,用生成器的方式输出
        """
    
        perm = np.arange(len(x))
        np.random.shuffle(perm)
        x = x[perm]
        y = y[perm]
        
        numBatches = len(x) // batchSize

        for i in range(numBatches):
            start = i * batchSize
            end = start + batchSize
            batchX = np.array(x[start: end], dtype="int64")
            batchY = np.array(y[start: end], dtype="float32")
            
            yield batchX, batchY

 

7 charCNN模型

  在charCNN 模型中咱们引入了BN层,可是效果并不明显,甚至存在一些收敛问题,待以后去探讨。

# 定义char-CNN分类器

class CharCNN(object):
    """
    char-CNN用于文本分类
    """
    def __init__(self, config, charEmbedding):
        # placeholders for input, output and dropuot
        self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
        self.inputY = tf.placeholder(tf.float32, [None, 1], name="inputY")
        self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb")
        self.isTraining = tf.placeholder(tf.bool, name="isTraining")
        
        self.epsilon = config.model.epsilon
        self.decay = config.model.decay
        
        # 字符嵌入
        with tf.name_scope("embedding"):
            
            # 利用one-hot的字符向量做为初始化词嵌入矩阵
            self.W = tf.Variable(tf.cast(charEmbedding, dtype=tf.float32, name="charEmbedding") ,name="W")
            # 得到字符嵌入
            self.embededChars = tf.nn.embedding_lookup(self.W, self.inputX)
            # 添加一个通道维度
            self.embededCharsExpand = tf.expand_dims(self.embededChars, -1)

        for i, cl in enumerate(config.model.convLayers):
            print("开始第" + str(i + 1) + "卷积层的处理")
            # 利用命名空间name_scope来实现变量名复用
            with tf.name_scope("convLayer-%s"%(i+1)):
                # 获取字符的向量长度
                filterWidth = self.embededCharsExpand.get_shape()[2].value
                
                # filterShape = [height, width, in_channels, out_channels]
                filterShape = [cl[1], filterWidth, 1, cl[0]]

                stdv = 1 / sqrt(cl[0] * cl[1])
                
                # 初始化w和b的值
                wConv = tf.Variable(tf.random_uniform(filterShape, minval=-stdv, maxval=stdv),
                                     dtype='float32', name='w')
                bConv = tf.Variable(tf.random_uniform(shape=[cl[0]], minval=-stdv, maxval=stdv), name='b')
                
#                 w_conv = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.05), name="w")
#                 b_conv = tf.Variable(tf.constant(0.1, shape=[cl[0]]), name="b")
                # 构建卷积层,能够直接将卷积核的初始化方法传入(w_conv)
                conv = tf.nn.conv2d(self.embededCharsExpand, wConv, strides=[1, 1, 1, 1], padding="VALID", name="conv")
                # 加上误差
                hConv = tf.nn.bias_add(conv, bConv)
                # 能够直接加上relu函数,由于tf.nn.conv2d事实上是作了一个卷积运算,而后在这个运算结果上加上误差,再导入到relu函数中
                hConv = tf.nn.relu(hConv)
                
#                 with tf.name_scope("batchNormalization"):
#                     hConvBN = self._batchNorm(hConv)
                
                if cl[-1] is not None:
                    ksizeShape = [1, cl[2], 1, 1]
                    hPool = tf.nn.max_pool(hConv, ksize=ksizeShape, strides=ksizeShape, padding="VALID", name="pool")
                else:
                    hPool = hConv
                    
                print(hPool.shape)
    
                # 对维度进行转换,转换成卷积层的输入维度
                self.embededCharsExpand = tf.transpose(hPool, [0, 1, 3, 2], name="transpose")
        print(self.embededCharsExpand)
        with tf.name_scope("reshape"):
            fcDim = self.embededCharsExpand.get_shape()[1].value * self.embededCharsExpand.get_shape()[2].value
            self.inputReshape = tf.reshape(self.embededCharsExpand, [-1, fcDim])
        
        weights = [fcDim] + config.model.fcLayers
        
        for i, fl in enumerate(config.model.fcLayers):
            with tf.name_scope("fcLayer-%s"%(i+1)):
                print("开始第" + str(i + 1) + "全链接层的处理")
                stdv = 1 / sqrt(weights[i])
                
                # 定义全链接层的初始化方法,均匀分布初始化w和b的值
                wFc = tf.Variable(tf.random_uniform([weights[i], fl], minval=-stdv, maxval=stdv), dtype="float32", name="w")
                bFc = tf.Variable(tf.random_uniform(shape=[fl], minval=-stdv, maxval=stdv), dtype="float32", name="b")
                
#                 w_fc = tf.Variable(tf.truncated_normal([weights[i], fl], stddev=0.05), name="W")
#                 b_fc = tf.Variable(tf.constant(0.1, shape=[fl]), name="b")
                
                self.fcInput = tf.nn.relu(tf.matmul(self.inputReshape, wFc) + bFc)
                
                with tf.name_scope("dropOut"):
                    self.fcInputDrop = tf.nn.dropout(self.fcInput, self.dropoutKeepProb)
                    
            self.inputReshape = self.fcInputDrop
            
        with tf.name_scope("outputLayer"):
            stdv = 1 / sqrt(weights[-1])
            # 定义隐层到输出层的权重系数和误差的初始化方法
#             w_out = tf.Variable(tf.truncated_normal([fc_layers[-1], num_classes], stddev=0.1), name="W")
#             b_out = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
            
            wOut = tf.Variable(tf.random_uniform([config.model.fcLayers[-1], 1], minval=-stdv, maxval=stdv), dtype="float32", name="w")
            bOut = tf.Variable(tf.random_uniform(shape=[1], minval=-stdv, maxval=stdv), name="b")
            # tf.nn.xw_plus_b就是x和w的乘积加上b
            self.predictions = tf.nn.xw_plus_b(self.inputReshape, wOut, bOut, name="predictions")
            # 进行二元分类
            self.binaryPreds = tf.cast(tf.greater_equal(self.predictions, 0.0), tf.float32, name="binaryPreds")
            
            
        with tf.name_scope("loss"):
            # 定义损失函数,对预测值进行softmax,再求交叉熵。
            
            losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.predictions, labels=self.inputY)
            self.loss = tf.reduce_mean(losses)
    
    def _batchNorm(self, x):
        # BN层代码实现
        gamma = tf.Variable(tf.ones([x.get_shape()[3].value]))
        beta = tf.Variable(tf.zeros([x.get_shape()[3].value]))

        self.popMean = tf.Variable(tf.zeros([x.get_shape()[3].value]), trainable=False, name="popMean")
        self.popVariance = tf.Variable(tf.ones([x.get_shape()[3].value]), trainable=False, name="popVariance")

        def batchNormTraining():
            # 必定要使用正确的维度确保计算的是每一个特征图上的平均值和方差而不是整个网络节点上的统计分布值
            batchMean, batchVariance = tf.nn.moments(x, [0, 1, 2], keep_dims=False)

            decay = 0.99
            trainMean = tf.assign(self.popMean, self.popMean*self.decay + batchMean*(1 - self.decay))
            trainVariance = tf.assign(self.popVariance, self.popVariance*self.decay + batchVariance*(1 - self.decay))

            with tf.control_dependencies([trainMean, trainVariance]):
                return tf.nn.batch_normalization(x, batchMean, batchVariance, beta, gamma, self.epsilon)

        def batchNormInference():
            return tf.nn.batch_normalization(x, self.popMean, self.popVariance, beta, gamma, self.epsilon)

        batchNormalizedOutput = tf.cond(self.isTraining, batchNormTraining, batchNormInference)
        return tf.nn.relu(batchNormalizedOutput)

 

8 性能指标函数

  输出分类问题的经常使用指标。

# 定义性能指标函数

def mean(item):
    return sum(item) / len(item)


def genMetrics(trueY, predY, binaryPredY):
    """
    生成acc和auc值
    """
    
    auc = roc_auc_score(trueY, predY)
    accuracy = accuracy_score(trueY, binaryPredY)
    precision = precision_score(trueY, binaryPredY, average='macro')
    recall = recall_score(trueY, binaryPredY, average='macro')
    
    return round(accuracy, 4), round(auc, 4), round(precision, 4), round(recall, 4)

 

9 训练模型

  在训练时,咱们定义了tensorBoard的输出,并定义了两种模型保存的方法。

# 训练模型

# 生成训练集和验证集
trainReviews = data.trainReviews
trainLabels = data.trainLabels
evalReviews = data.evalReviews
evalLabels = data.evalLabels

charEmbedding = data.charEmbedding

# 定义计算图
with tf.Graph().as_default():

    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
    session_conf.gpu_options.allow_growth=True
    session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9  # 配置gpu占用率  

    sess = tf.Session(config=session_conf)
    
    # 定义会话
    with sess.as_default():
        
        cnn = CharCNN(config, charEmbedding)
        globalStep = tf.Variable(0, name="globalStep", trainable=False)
        # 定义优化函数,传入学习速率参数
        optimizer = tf.train.RMSPropOptimizer(config.training.learningRate)
        # 计算梯度,获得梯度和变量
        gradsAndVars = optimizer.compute_gradients(cnn.loss)
        # 将梯度应用到变量下,生成训练器
        trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep)
        
        # 用summary绘制tensorBoard
        gradSummaries = []
        for g, v in gradsAndVars:
            if g is not None:
                tf.summary.histogram("{}/grad/hist".format(v.name), g)
                tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
        
        outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
        print("Writing to {}\n".format(outDir))
        
        lossSummary = tf.summary.scalar("trainLoss", cnn.loss)
        
        summaryOp = tf.summary.merge_all()
        
        trainSummaryDir = os.path.join(outDir, "train")
        trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph)
        
        evalSummaryDir = os.path.join(outDir, "eval")
        evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph)
        
        
        # 初始化全部变量
        saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)
        
        # 保存模型的一种方式,保存为pb文件
        builder = tf.saved_model.builder.SavedModelBuilder("../model/charCNN/savedModel")
        sess.run(tf.global_variables_initializer())

        def trainStep(batchX, batchY):
            """
            训练函数
            """   
            feed_dict = {
              cnn.inputX: batchX,
              cnn.inputY: batchY,
              cnn.dropoutKeepProb: config.model.dropoutKeepProb,
              cnn.isTraining: True
            }
            _, summary, step, loss, predictions, binaryPreds = sess.run(
                [trainOp, summaryOp, globalStep, cnn.loss, cnn.predictions, cnn.binaryPreds],
                feed_dict)
            timeStr = datetime.datetime.now().isoformat()
            acc, auc, precision, recall = genMetrics(batchY, predictions, binaryPreds)
            print("{}, step: {}, loss: {}, acc: {}, auc: {}, precision: {}, recall: {}".format(timeStr, step, loss, acc, auc, precision, recall))
            trainSummaryWriter.add_summary(summary, step)

        def devStep(batchX, batchY):
            """
            验证函数
            """
            feed_dict = {
              cnn.inputX: batchX,
              cnn.inputY: batchY,
              cnn.dropoutKeepProb: 1.0,
              cnn.isTraining: False
            }
            summary, step, loss, predictions, binaryPreds = sess.run(
                [summaryOp, globalStep, cnn.loss, cnn.predictions, cnn.binaryPreds],
                feed_dict)
            
            acc, auc, precision, recall = genMetrics(batchY, predictions, binaryPreds)
            
            evalSummaryWriter.add_summary(summary, step)
            
            return loss, acc, auc, precision, recall
        
        for i in range(config.training.epoches):
            # 训练模型
            print("start training model")
            for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
                trainStep(batchTrain[0], batchTrain[1])

                currentStep = tf.train.global_step(sess, globalStep) 
                if currentStep % config.training.evaluateEvery == 0:
                    print("\nEvaluation:")
                    
                    losses = []
                    accs = []
                    aucs = []
                    precisions = []
                    recalls = []
                    
                    for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
                        loss, acc, auc, precision, recall = devStep(batchEval[0], batchEval[1])
                        losses.append(loss)
                        accs.append(acc)
                        aucs.append(auc)
                        precisions.append(precision)
                        recalls.append(recall)
                        
                    time_str = datetime.datetime.now().isoformat()
                    print("{}, step: {}, loss: {}, acc: {}, auc: {}, precision: {}, recall: {}".format(time_str, currentStep, mean(losses), 
                                                                                                       mean(accs), mean(aucs), mean(precisions),
                                                                                                       mean(recalls)))
                    
                if currentStep % config.training.checkpointEvery == 0:
                    # 保存模型的另外一种方法,保存checkpoint文件
                    path = saver.save(sess, "../model/charCNN/model/my-model", global_step=currentStep)
                    print("Saved model checkpoint to {}\n".format(path))
                    
        inputs = {"inputX": tf.saved_model.utils.build_tensor_info(cnn.inputX),
                  "keepProb": tf.saved_model.utils.build_tensor_info(cnn.dropoutKeepProb)}

        outputs = {"binaryPreds": tf.saved_model.utils.build_tensor_info(cnn.binaryPreds)}

        prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
                                                                                      method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
        legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
        builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
                                            signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op)

        builder.save()
相关文章
相关标签/搜索