JavaShuo
栏目
标签
对抗样本(论文解读十二): Imagenet-trained cnns are Biased towards Texture; Increasing Shape Bias Improves
时间 2021-01-13
标签
Deep learning
对抗样本
繁體版
原文
原文链接
Imagenet-trained cnns are Biased towards Texture; Increasing Shape Bias Improves Accuracy And Robustness RobertGeirhos University of T¨ubingen & IMPRS-IS [email protected] PatriciaRubisch University o
>>阅读原文<<
相关文章
1.
IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROB...
2.
对抗样本(论文解读十一):PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning
3.
对抗样本(论文解读八):Towards More Robust Adversarial Attack Against Real World Object Detectors
4.
对抗样本(论文解读三): Adversarial Examples Improve Image Recognition
5.
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
6.
对抗样本(论文解读七):On Physical Adversarial Patches for Object Detection
7.
对抗样本论文学习:Deep Neural Networks are Easily Fooled
8.
INQ 论文解读:Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
9.
ECCV 2020 的对抗相关论文(对抗生成、对抗攻击)
10.
Gated-SCNN: Gated Shape CNNs for Semantic Segmentation——论文阅读理解
更多相关文章...
•
C# 文本文件的读写
-
C#教程
•
C# 二进制文件的读写
-
C#教程
•
Kotlin学习(二)基本类型
•
JDK13 GA发布:5大特性解读
相关标签/搜索
论文解读
bias
increasing
biased
texture
cnns
shape
对抗
论文阅读
样本
PHP教程
Hibernate教程
MyBatis教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
深度学习硬件架构简述
2.
重温矩阵(V) 主成份分析
3.
国庆佳节第四天,谈谈我月收入增加 4K 的故事
4.
一起学nRF51xx 23 - s130蓝牙API介绍
5.
2018最为紧缺的十大岗位,技术岗占80%
6.
第一次hibernate
7.
SSM项目后期添加数据权限设计
8.
人机交互期末复习
9.
现在无法开始异步操作。异步操作只能在异步处理程序或模块中开始,或在页生存期中的特定事件过程中开始...
10.
微信小程序开发常用元素总结1-1
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROB...
2.
对抗样本(论文解读十一):PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning
3.
对抗样本(论文解读八):Towards More Robust Adversarial Attack Against Real World Object Detectors
4.
对抗样本(论文解读三): Adversarial Examples Improve Image Recognition
5.
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
6.
对抗样本(论文解读七):On Physical Adversarial Patches for Object Detection
7.
对抗样本论文学习:Deep Neural Networks are Easily Fooled
8.
INQ 论文解读:Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
9.
ECCV 2020 的对抗相关论文(对抗生成、对抗攻击)
10.
Gated-SCNN: Gated Shape CNNs for Semantic Segmentation——论文阅读理解
>>更多相关文章<<