记忆网络RNN、LSTM与GRU

RNN 结构 训练 应用 RNN Variants LSTM 结构 梯度消失及梯度爆炸 GRU 结构 一般的神经网络输入和输出的维度大小都是固定的,针对序列类型(尤其是变长的序列)的输入或输出数据束手无策。RNN通过采用具有记忆的隐含层单元解决了序列数据的训练问题。LSTM、GRU属于RNN的改进,解决了RNN中梯度消失爆炸的问题,属于序列数据训练的常用方案。 RNN 结构 传统的神经网络的输入和
相关文章
相关标签/搜索