官方文档:http://docs.sqlalchemy.org/en/rel_1_0/orm/basic_relationships.html#relationship-patternshtml
最近在学习到Flask中的Sqlalchemy, 不过在看到数据库关系db.relations()
时对lazy
这个参数一直很模糊。主要是看到Flask Web开发
这本书中对关注与被关注的关系建模中,被lazy的使用绕晕了。
看官方文档,也得不到多少信息,因而就本身实践,从lazy
参数的不一样值所执行的sql
语句出发,结合one-to-many
和many-to-many
的关系,分析lazy参数取不一样值(dynamic, joined, select
)在不一样场景下的选择,由于涉及到数据库性能问题,选择不一样差异很大,尤为在数据量比较大时。
如下的实例均是基于以下的模型和表:主要侧重对relationship
中的backref的lazy
属性作修改。mysql
registrations = db.Table('registrations', db.Column('student_id', db.Integer, db.ForeignKey('students.id')), db.Column('class_id', db.Integer, db.ForeignKey('classes.id'))) class Student(db.Model): __tablename__ = 'students' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) class_id = db.Column(db.Integer, db.ForeignKey('classes.id')) def __repr__(self): return '<Student: %r>' %self.name class Class(db.Model): __tablename__ = 'classes' id = db.Column(db.Integer, primary_key=True) students = db.relationship('Student', backref='_class', lazy="dynamic") name = db.Column(db.String(64)) def __repr__(self): return '<Class: %r>' %self.name
首先看官网的关于lazy
的说明:sql
lazy 决定了 SQLAlchemy 何时从数据库中加载数据:,有以下四个值:(其实还有个noload不经常使用)
select
: (which is the default) means that SQLAlchemy will load the data as necessary in one go using a standard select statement.joined
: tells SQLAlchemy to load the relationship in the same query as the parent using a JOIN statement.subquery
: works like ‘joined’ but instead SQLAlchemy will use a subquery.dynamic
: is special and useful if you have many items. Instead of loading the items SQLAlchemy will return another query object which
you can further refine before loading the items. This is usually what you want if you expect more than a handful of items for this relationship数据库
通俗了说,select
就是访问到属性的时候,就会所有加载该属性的数据。joined
则是在对关联的两个表进行join
操做,从而获取到全部相关的对象。dynamic
则不同,在访问属性的时候,并无在内存中加载数据,而是返回一个query
对象, 须要执行相应方法才能够获取对象,好比.all()
.下面结合实例解释这几个的使用场景。app
首先是最开始一对多关系中,改动以下:将一
的lazy改成select:性能
students = db.relationship('Student', backref='_class', lazy="select")
这样的话, class.students会直接返回结果列表:学习
>>> from app.models import Student as S, Class as C >>> c1=C.query.first() >>> c1.students [<Student: u'test'>, <Student: u'test2'>, <Student: u'test3'>]
这种状况下,在数据量较大或者想作进一步操做时候,不太方便,所以这个时候, dynamic
就用上了:this
students = db.relationship('Student', backref='_class', lazy="dynamic")
一样看看结果:spa
>>> from app.models import Student as S, Class as C >>> s1=S.query.first() >>> c1=C.query.first() >>> c1.students <sqlalchemy.orm.dynamic.AppenderBaseQuery object at 0x7f007d2e8ed0> >>> print c1.students SELECT students.id AS students_id, students.name AS students_name FROM students, registrations WHERE :param_1 = registrations.class_id AND students.id = registrations.student_id >>> c1.students.all() [<Student: u'test'>, <Student: u'test2'>, <Student: u'test3'>]
能够看到, 执行c1.student
返回的是是一个 query
对象,而且该对象的sql
语句也能够看到,就是简单查询了Student
。而若是lazy=select 或者 joined
均是直接返回结果。 须要注意的是, lazy="dynamic"
只能够用在一对多和多对对关系中,不能够用在一对一和多对一中,若是返回结果只有一个的话,也就无须要延迟加载数据了。
前面说的都是给当前属性加lazy
属性,backref的lazy默认都是select
,若是给反向引用backref
加lazy属性呢? 直接使用backref=db.backref('students', lazy='dynamic'
便可。这个在多对多关系须要进行考量。
先看一个最基本的多对多关系:code
registrations = db.Table('registrations', db.Column('student_id', db.Integer, db.ForeignKey('students.id')), db.Column('class_id', db.Integer, db.ForeignKey('classes.id'))) class Student(db.Model): __tablename__ = 'students' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) # class_id = db.Column(db.Integer, db.ForeignKey('classes.id')) 这里须要注释,不须要外键了 def __repr__(self): return '<Student: %r>' %self.name class Class(db.Model): __tablename__ = 'classes' id = db.Column(db.Integer, primary_key=True) students = db.relationship('Student', secondary=registrations, backref='_class', lazy="dynamic") #这里指定关联表 name = db.Column(db.String(64)) def __repr__(self): return '<Class: %r>' %self.name
一样执行结果能够看到:
>>> s1=S.query.first() >>> c1=C.query.first() >>> s1._class [<Class: u'class1'>, <Class: u'class2'>] >>> c1.students <sqlalchemy.orm.dynamic.AppenderBaseQuery object at 0x7ff8691a8610> >>> c1.students.all() [<Student: u'test'>, <Student: u'test2'>, <Student: u'test3'>] >>> print c1.students SELECT students.id AS students_id, students.name AS students_name FROM students, registrations WHERE :param_1 = registrations.class_id AND students.id = registrations.student_id
能够看到这个跟一对多关系中的很相似,只不过s1._class
成为了集合形式, 由于backref="_class"
默认仍然是select
,因此直接返回结果,而c1.students
的sql语句也仅仅是查询了students。可是若是修改反向引用的lazy
为joined
:
students = db.relationship('Student', secondary=registrations, backref=db.backref('_class', lazy="joined"), lazy="dynamic")
而后看看结果:
.... >>> print c1.students SELECT students.id AS students_id, students.name AS students_name, classes_1.id AS classes_1_id, classes_1.name AS classes_1_name FROM registrations, students LEFT OUTER JOIN (registrations AS registrations_1 JOIN classes AS classes_1 ON classes_1.id = registrations_1.class_id) ON students.id = registrations_1.student_id WHERE :param_1 = registrations.class_id AND students.id = registrations.student_id >>> c1.students.all() [<Student: u'test'>, <Student: u'test2'>, <Student: u'test3'>] >>> s1._class [<Class: u'class1'>, <Class: u'class2'>]
首先不变的仍是s1._class
仍是直接返回数据。有变化的是c1.students
的sql语句, 不只仅是查询Student
对象, 并且还经过与关联表作join
操做,把相关联的Class
也查询了。相关联的意思是什么呢?看下直接执行sql语句的结果就知道了:
mysql> SELECT students.id AS students_id, students.name AS students_name, classes_1.id AS classes_1_id, classes_1.name AS classes_1_name FROM registrations, students LEFT OUTER JOIN (registrations AS registrations_1 JOIN classes AS classes_1 ON classes_1.id = registrations_1.class_id) ON students.id = registrations_1.student_id WHERE 1 = registrations.class_id AND students.id = registrations.student_id; +-------------+---------------+--------------+----------------+ | students_id | students_name | classes_1_id | classes_1_name | +-------------+---------------+--------------+----------------+ | 1 | test | 1 | class1 | | 1 | test | 2 | class2 | | 2 | test2 | 1 | class1 | | 3 | test3 | 1 | class1 | +-------------+---------------+--------------+----------------+ 4 rows in set (0.00 sec)
也就是说把查询获得的students的对应的class实体也都查询出来了。 可是貌似在这个例子中没有意义,由于这种多对多的关系比较简单,关联表甚至都不是模型,只有两个外键的id, 上述代码中的registrations
是直接被sqlalchemy
接管的,程序没法直接访问的。
在下面的多对多例子中,咱们能够看到上述的lazy
方式的优点,咱们把关联表改成实体model,而且额外增长一个时间信息。模型代码以下:
class Registration(db.Model): '''关联表''' __tablename__ = 'registrations' student_id = db.Column(db.Integer, db.ForeignKey('students.id'), primary_key=True) class_id = db.Column(db.Integer, db.ForeignKey('classes.id'), primary_key=True) create_at = db.Column(db.DateTime, default=datetime.utcnow) class Student(db.Model): __tablename__ = 'students' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) _class = db.relationship('Registration', foreign_keys=[Registration.student_id], backref=db.backref('student', lazy="joined"), lazy="dynamic") def __repr__(self): return '<Student: %r>' %self.name class Class(db.Model): __tablename__ = 'classes' id = db.Column(db.Integer, primary_key=True) students = db.relationship('Registration', foreign_keys=[Registration.class_id], backref=db.backref('_class', lazy="joined"), lazy="dynamic") name = db.Column(db.String(64)) def __repr__(self): return '<Class: %r>' %self.name
提早准备数据:
mysql> select * from classes; +----+--------+ | id | name | +----+--------+ | 1 | class1 | | 2 | class2 | +----+--------+ 2 rows in set (0.00 sec) mysql> select * from students; +----+-------+ | id | name | +----+-------+ | 1 | test | | 2 | test2 | | 3 | test3 | +----+-------+ 3 rows in set (0.00 sec) mysql> select * from registrations; +------------+----------+-----------+ | student_id | class_id | create_at | +------------+----------+-----------+ | 1 | 1 | NULL | | 2 | 1 | NULL | | 3 | 1 | NULL | | 1 | 2 | NULL | +------------+----------+-----------+ 4 rows in set (0.00 sec)
以后看看结果:
>>> s1._class.all() [<app.models.Registration object at 0x7f0348018ed0>, <app.models.Registration object at 0x7f0348018f50>] >>> c1.students.all() [<app.models.Registration object at 0x7f0348018ed0>, <app.models.Registration object at 0x7f03480412d0>, <app.models.Registration object at 0x7f034c32f250>]
能够看到返回值是Registration两个对象, 再也不直接返回Student
和Class
对象了。若是想要获取的话,可使用给Registration加的反向引用:
>>> map(lambda x: x._class, s1._class.all()) [<Class: u'class1'>, <Class: u'class2'>] >>> map(lambda x: x.student, c1.students.all()) [<Student: u'test'>, <Student: u'test2'>, <Student: u'test3'>]
那么问题就来了,这里在调用Registration的_class
和student
时候, 还需不须要再查询一遍数据库呢?
下面经过查看执行的sql语句来看看:
>>> print s1._class SELECT registrations.student_id AS registrations_student_id, registrations.class_id AS registrations_class_id, registrations.create_at AS registrations_create_at, classes_1.id AS classes_1_id, classes_1.name AS classes_1_name, students_1.id AS students_1_id, students_1.name AS students_1_name FROM registrations LEFT OUTER JOIN classes AS classes_1 ON classes_1.id = registrations.class_id LEFT OUTER JOIN students AS students_1 ON students_1.id = registrations.student_id WHERE :param_1 = registrations.student_id
咱们能够发现: 跟上一个例子同样,s1._class
不只查询了对应的class
信息,并且经过join
操做,获取到了相应的Student
和Class
对象,换句话说,把Registration的student
和_class
两个回引属性均指向了对应的对象, 也就是说,s1._class
这一条查询语句就能够把上述操做都完成。这个就是backref=db.backref('_class', lazy='joined')
的做用。
下面再看看把lazy
改成select
的状况:
### _class = db.relationship('Registration', foreign_keys=[Registration.student_id], backref=db.backref('student', lazy="select"), lazy="dynamic") ### students = db.relationship('Registration', foreign_keys=[Registration.class_id], backref=db.backref('_class', lazy="select"), lazy="dynamic")
这样看看查询语句:
>>> s1=S.query.first() >>> print s1._class SELECT registrations.student_id AS registrations_student_id, registrations.class_id AS registrations_class_id, registrations.create_at AS registrations_create_at FROM registrations WHERE :param_1 = registrations.student_id >>> map(lambda x : x._class , s1._class) [<Class: u'class1'>, <Class: u'class2'>]
十分简单的sql语句,仅仅查询返回了 Registration
对象, 虽然结果同样,可是每个Registration
对象访问_class
属性时,又各自都查询了一遍数据库! 这是很重的! 好比一个class有100个student, 那么获取class.students
须要额外查询100次数据库! 每一次数据库的查询代价很大,所以这就是joined
的做用了。