(转)从CNN到GCN的联系与区别——GCN从入门到精(fang)通(qi)

转载于:博客 1 什么是离散卷积?CNN中卷积发挥什么作用? 了解GCN之前必须对离散卷积(或者说CNN中的卷积)有一个明确的认识: 如何通俗易懂地解释卷积?这个链接的内容已经讲得很清楚了,离散卷积本质就是一种加权求和。 如图1所示,CNN中的卷积本质上就是利用一个共享参数的过滤器(kernel),通过计算中心像素点以及相邻像素点的加权和来构成feature map实现空间特征的提取,当然加权系数
相关文章
相关标签/搜索