摘要: 原来人工智能跟人类智能有那么深的联系!
AI系统与人类学习之间的另外一个主要差别在于AI系统所需的大量标记数据才能够达到人类级别的性能。例如,最近的语音识别系统在11940小时的语音训练后才能对齐转录。若是咱们天天大声地听到另外一我的类阅读文本两个小时,那么咱们须要16年才能获取到这个数据集。AlphaGozero练习了490万场才击败人类围棋大师。若是一我的天天玩围棋30年,那么他天天必须玩450场比赛才能达到AlphaGozero的练习量。此外,最近关于视觉问答的数据集包含了0.25M图像,0.76M问题和10M答案。若是咱们天天收到关于图像的100个问题的答案,咱们须要274年的时间来吸取这种规模的数据集。很明显人类接受的标记训练数据量要少得多,但他们能够识别语音,玩围棋并很好地回答有关图像的问题。 网络
其中,人工智能和生物智能之间差距的几个关键在于人类从未标记数据中学习的能力(无监督学习),以及在解决先前任务时得到的强大先验知识,并将这些知识转移到新任务中(迁移学习)。最后,人类社会创建了教育系统,精心挑选一些学习任务进行教学,以促进知识获取。为了在人工系统中有效地实例化这些概念,咱们须要更深刻地理解和数学形式化人类和其余动物如何进行无监督学习及知识如何在任务之间转移,这须要计算机科学家、心理学家和教育工做者的参与。由于这对于在标记数据稀缺的领域中训练AI是相当重要。并发
当前AI在商业环境中的成功不少是经过监督方法实现的,其中AI系统被动地接收输入,被告知正确的输出,而且它调整其参数以匹配每一个输入-输出组合。相比之下,婴儿就像活跃的科学家同样探索他们的环境。例如:利用魔术,婴儿会看到两个“魔法”物体:物体A,它彷佛穿过墙壁,而物体B,它在掉落时不会掉落。给婴儿A,B,婴儿将尝试将物体A穿过墙壁,而后放下物体B以查看它是否会掉落。这项非凡的实验代表,婴儿就像科学家同样,积极地探索他们的世界。分布式
所以,与当前大多数的商业AI系统不一样,婴儿具备学习和利用世界模型的卓越能力。咱们须要在神经科学和人工智能方面进一步研究从经验中学习世界模型,使用这些世界模型进行规划(即,根据当前行动想象不一样的将来),并使用这些将来的计划来作出决策。这种基于模型的规划和决策多是当前无模型强化学习系统的有力支持,该系统简单地将世界状态映射到值或预期的将来奖励。人工智能中的这项工做能够与神经科学的工做携手并进,揭示动物的神经活动如何与想象的和将来相关。像好奇心这样的基本驱动能够形式化为强化学习系统,以此来促进学习和探索。更通常地,深刻理解多个系统和促进动物和人类学习的内在生物驱动可能对加速人工系统的学习很是有益。性能
生物系统和AI系统之间的另外一个数量级差别在于它们的能量消耗。人脑仅消耗20瓦的功率,而超级计算机则以兆瓦的功率运行。形成这种差别的一个关键缘由多是过分依赖数字计算自己,虽然数字革命推进了现代信息技术的兴起,但如今咱们对实现人工智能的追求被认为是次优遗留技术。缘由是数字计算须要在计算的中间阶段以极高的可靠性翻转每一位。然而,热力学定律则为每一个快速可靠的位翻转肯定了至关大的能量成本。学习
相比之下,生物的细胞内的分子以及脑内神经元的计算看起来使人惊讶地嘈杂和不精确。然而,生物计算的每一个中间步骤都足够可靠,以使最终答案足够好。此外,大脑智能地向上或向下调节能量成本根据所需的通讯速度。例如,考虑大脑中经过目标神经元的单位的成本。它开始于囊泡的随机释放,其以1毫米/秒的速度扩散到源神经元和目标神经元之间的空间,仅燃烧2.3毫微微焦耳(fj)。速度刚恰好,由于神经元链接之间的空间只有20纳米。该化学信号被转换为无源电信号,其以1米/秒的速度流过神经元细胞体,燃烧23fj横穿约10微米。最后,它到达轴突终端并转换为长轴,沿着轴突每秒行进100米,燃烧6000 fJ行进1厘米。所以,在从化学信号传递到被动电信号时,大脑动态地将通讯速度上调1000倍,以跨越增长1000倍的距离,从而致使能量消耗增长10倍。优化
所以,只有在须要更高速度且仅须要更高可靠性时,大脑才会消耗更多能量。相比之下,数字计算机在刚性同步时钟上运行,而且在每一个时钟周期,许多晶体管必须可靠地翻转状态。总之,生物计算的明显混乱不必定是不可避免的混乱,而是可能反映出高能效设计的理想原则。为了在咱们的AI硬件中实现这样的效率,遵循生物计算的这些原则多是必要的。人工智能
最近神经科学和AI之间相互做用促进了深度和递归神经网络模型的发展。在许多状况下,当训练深度或递归网络来解决任务时,其内部表现看起来与训练为解决相同任务的动物中测量的内部神经活动模式很是类似。所以,咱们一般会在不一样的任务中得到不一样大脑区域操做的高度复杂但使人惊讶的真实模型,从而提出了一个基本问题:咱们如何理解这些模型正在作什么以及它们如何工做?更确切地说,学习网络链接和神经动态如何产生高性能?AI目前在理解它的神经模型正在作什么时面临一样的问题,虽然一些工程师认为没有必要了解神经网络是如何工做的。然而,对于当前网络的成功和失败如何因其连通性和动态性而产生的更深刻的科学理解将致使网络的优化。然而,科学与技术之间的相互做用历史上几乎没有更深刻的科学认识,也不会致使更好的技术。可是,在AI的某些应用中,特别是在医学诊断或法律中,可解释的AI是必不可少的。例如,若是医生和法官没法理解为何这些系统作出了他们作出的决定,他们就不会在他们的案件中使用人工智能系统的建议。spa
所以,神经科学须要共享理解网络性能和决策如何做为网络链接和动态的新兴属性。所以,理论神经科学,应用物理学和数学的思想和理论的发展能够帮助分析AI系统。此外,AI系统的行为可能会改变神经科学中实验设计的本质,将实验工做集中在AI中难以理解的网络功能方面。整体而言,神经科学,人工智能和许多其余理论学科之间的紧密联系能够得到不少灵感,这可能会为生物和人工系统中的智能的出现带来统一的规律。设计
在人工智能系统设计中,一种常常被引用的无视生物学的争论常涉及到飞机与鸟类的比较。然而,仔细观察这个想法会发现更多的细微差异。飞行的通常问题涉及解决两个基本问题:(1)为了前进而产生推力,(2)升力的大小使咱们不会脱离天空。鸟类和飞机用不一样方法解决了推力问题:鸟儿拍翅膀和飞机使用喷气发动机。可是,它们以彻底相同的方式解决升力问题,经过使用弯曲的翼形,在低于和低于上方的气压下产生更高的气压。所以,滑翔的鸟类和飞机的运做很是类似。blog
实际上,咱们知道空气动力学的通常物理定律:不一样形状经过空气时,均可以用计算的方法来预测产生的力,如升力和推力。并且,任何解决飞行问题的方法,不管是生物仍是人工,都必须遵照空气动力学定律。
更通常地说,在咱们对物理世界的研究中,咱们习惯于存在管理其行为的原则或规律。例如,正如空气动力学控制飞行物体的运动同样,广义相对论控制着空间和时间的曲率,量子力学控制着纳米世界的演化。咱们认为,可能存在普世原则或法律来管理智能行为如何从大型互连神经元网络的合做活动中产生。这些法律能够链接和统一神经科学、心理学、认知科学和人工智能的相关学科,他们的阐述也须要帮助分析和计算领域,如物理,数学和统计学。事实上,这篇文章的做者使用了动力系统理论、统计力学、黎曼几何、随机矩阵理论和自由几率理论等技术,得到了对生物和人工网络运做的概念性看法。然而,为了阐明管理非线性分布式网络中出现智能的通常规律和设计原则,还须要进一步的工做,包括开发新概念,分析方法和工程能力。最终,就像鸟类,飞机和空气动力学的故事同样,创造智能机器的问题可能存在多种解决方案,其中一些组件在生物解决方案和人工解决方案之间共享,而其余组件则可能不一样。经过寻求通常的智力法则,发现适用于生物和人工系统的新兴智能的潜在法则,以及创建受神经科学和心理学启发的新型AI,须要许多研究人员共同努力:计算机科学家追求更好的AI系统,神经科学家,心理学家和认知科学家探索大脑和思想的属性,数学家,物理学家,统计学家和其余理论家寻求形式化咱们的综合知识并发现通常的法律和原则。
本文为云栖社区原创内容,未经容许不得转载。