汽车加油问题

问题描述

已知:一辆汽车加满油后可行使n千米,而旅途中有若干个加油站,试设计一个有效算法,指出应该在那个加油站停靠加油,使沿途加油次数最少,而后证实算法能产生最优解。java

问题分析

用1,2,…,m表示旅途中的m个加油站,0表示出发地,用m+1表示目的地,s[0..m+1]表示加油站至出发地距离(s[0]<s[1]<s[2]<…<s[m]<s[m+1])。则很天然会想到使用贪心策略:每次跑不到下一个加油站了再加油。假设如今能够跑n千米,则第一次加油位置为s[i]<=n<s[i+1]时选择在第i个加油站加油。则求第二次加油位置就变成了从s[i]出发的能够跑n千米的车,则以后的s[i+1...m+1]=s[]-s[i],就是相同的子问题。算法

证实算法能够产生最优解

最优解包含咱们的贪心选择

假设最优解为a,b,c...
a<i时,a,b,c...为最优解
a==i时,由于s[b]<=n+s[a],s[i]>s[a],因此s[b]<=n+s[a]<n+s[i],也是一个最优解
a>i时,由于n<s[i+1]<=s[a],不知足题意设计

具备最优子结构

第二次加油位置就变成了从s[i]出发的能够跑n千米的车,则以后的s[i+1...m+1]=s[]-s[i],就是相同的子问题,以此类推直到没有加油站只有目的地。code

Java代码实现

/**
	 * 计算通过加油站的次数
	 * @param s s(i)表示距离出发地的距离,最后一个表示目的地
	 * @param n 汽车能够跑的千米数
	 */
	public static void getNum(int[]s,int n) {
		int x=0;//已经跑过的路程
		int num=0;
		for(int i=0;i<s.length-1;i++) {
			if(s[i]-x<=n&&s[i+1]-x>n) {
				x=s[i];
				num++;
				System.out.println("在"+(i+1)+"处加油");
			}
		}
		System.out.println("共加油"+num+"次");
	}
	
	public static void main(String[] args) {
		//int[]s= {4,7,11,13};//4 3 4 2
		int[]s= {4,6,9,10,14};//4 2 3 1 4
		getNum(s,4);
	}

运行结果

int[]s= {4,6,9,10,14};//4 2 3 1 4

int[]s= {4,7,11,13};//4 3 4 2
blog

相关文章
相关标签/搜索