Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks(阅读理解)

本文重点: 和一般形式的文本处理方式一样,并没有特别大的差异,文章的重点在于提出了一个相似度矩阵 计算过程介绍: query和document中的首先通过word embedding处理后获得对应的表示矩阵 利用CNN网络进行处理获得各自的feature map,接着pooling后获得query对应的向量表示Xq和document的向量Xd 不同于传统的Siamense网络在这一步利用欧式距离或
相关文章
相关标签/搜索