JavaShuo
栏目
标签
[ICCV2019] Detecting the Unexpected via Image Resynthesis
时间 2021-01-11
标签
ICCV2019
繁體版
原文
原文链接
作者:Krzysztof Lis , EPFL Introduction 利用GAN网络做图像中未知物体的 anomaly detection。该任务简单来说即为,训练数据中没有该类别物体以及其标签,但测试数据中有,如何定位该物体。传统思路有两种:1、根据预测的分割图中较低的confidence score来找未知物体的区域(segmentation uncertainty);2、利用auto-e
>>阅读原文<<
相关文章
1.
[ICCV2019] Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation
2.
Few-shot Object Detection via Feature Reweighting (ICCV2019)
3.
Detecting Deceptive Review Spam via Attention-Based Neural Networks
4.
[ICCV2019] InGAN: Capturing and Remapping the “DNA” of a Natural Image
5.
ICCV2019-ERL-Net:Entangled Representation Learning for Single Image De-Raining
6.
CFSNet: Toward a Controllable Feature Space for Image Restoration ICCV2019
7.
[ICCV2019] Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis
8.
Image Denoising via CNNs: An Adversarial Approach
9.
《GCAMatting:Natural Image Matting via Guided Contextual Attention》
10.
The usage of docker image wurstmeister/kafka
更多相关文章...
•
RSS
元素
-
RSS 教程
•
ASP.NET Image 控件
-
ASP.NET 教程
•
Docker 清理命令
•
Docker容器实战(七) - 容器眼光下的文件系统
相关标签/搜索
iccv2019
detecting
unexpected
image
c#image
3.unexpected
mysql..the
the&nbs
mysql....the
The One!
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Appium入门
2.
Spring WebFlux 源码分析(2)-Netty 服务器启动服务流程 --TBD
3.
wxpython入门第六步(高级组件)
4.
CentOS7.5安装SVN和可视化管理工具iF.SVNAdmin
5.
jedis 3.0.1中JedisPoolConfig对象缺少setMaxIdle、setMaxWaitMillis等方法,问题记录
6.
一步一图一代码,一定要让你真正彻底明白红黑树
7.
2018-04-12—(重点)源码角度分析Handler运行原理
8.
Spring AOP源码详细解析
9.
Spring Cloud(1)
10.
python简单爬去油价信息发送到公众号
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
[ICCV2019] Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation
2.
Few-shot Object Detection via Feature Reweighting (ICCV2019)
3.
Detecting Deceptive Review Spam via Attention-Based Neural Networks
4.
[ICCV2019] InGAN: Capturing and Remapping the “DNA” of a Natural Image
5.
ICCV2019-ERL-Net:Entangled Representation Learning for Single Image De-Raining
6.
CFSNet: Toward a Controllable Feature Space for Image Restoration ICCV2019
7.
[ICCV2019] Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis
8.
Image Denoising via CNNs: An Adversarial Approach
9.
《GCAMatting:Natural Image Matting via Guided Contextual Attention》
10.
The usage of docker image wurstmeister/kafka
>>更多相关文章<<