Spark中parallelize函数和makeRDD函数的区别

咱们知道,在Spark中建立RDD的建立方式大概能够分为三种:node

  • 从集合中建立RDD;
  • 从外部存储建立RDD;
  • 从其余RDD建立。

而从集合中建立RDD,Spark主要提供了两种函数:parallelize和makeRDD。咱们能够先看看这两个函数的声明:apache

def parallelize[T: ClassTag](
    seq: Seq[T],
    numSlices: Int = defaultParallelism):RDD[T]

def makeRDD[T: ClassTag](
    seq: Seq[T],
    numSlices: Int = defaultParallelism): RDD[T]

def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T]

咱们能够从上面看出makeRDD有两种实现,并且第一个makeRDD函数接收的参数和parallelize彻底一致。其实第一种makeRDD函数实现是依赖了parallelize函数的实现,来看看Spark中是怎么实现这个makeRDD函数的:函数

def makeRDD[T: ClassTag](
    seq: Seq[T],
    numSlices: Int = defaultParallelism): RDD[T] = withScope {
    parallelize(seq, numSlices)
}

咱们能够看出,这个makeRDD函数彻底和parallelize函数一致。可是咱们得看看第二种makeRDD函数函数实现了,它接收的参数类型是Seq[(T, Seq[String])],Spark文档的说明是this

Distribute a local Scala collection to form an RDD, with one or more location preferences (hostnames of Spark nodes) for each object. Create a new partition for each collection item.spa

原来,这个函数还为数据提供了位置信息,来看看咱们怎么使用:scala

scala> val iteblog1 = sc.parallelize(List(1,2,3))
iteblog1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:21

scala> val iteblog2 = sc.makeRDD(List(1,2,3))
iteblog2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[11] at makeRDD at <console>:21

scala> val seq = List((1, List("iteblog.com", "sparkhost1.com", "sparkhost2.com")),(2, List("iteblog.com", "sparkhost2.com")))
seq: List[(Int, List[String])] = List((1,List(iteblog.com, sparkhost1.com,sparkhost2.com)),(2,List(iteblog.com, sparkhost2.com)))

scala> val iteblog3 = sc.makeRDD(seq)
iteblog3: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[12] at makeRDD at <console>:23

scala> iteblog3.preferredLocations(iteblog3.partitions(1))
res26: Seq[String] = List(iteblog.com, sparkhost2.com)

scala> iteblog3.preferredLocations(iteblog3.partitions(0))
res27: Seq[String] = List(iteblog.com, sparkhost1.com, sparkhost2.com)

scala> iteblog1.preferredLocations(iteblog1.partitions(0))
res28: Seq[String] = List()

咱们能够看到,makeRDD函数有两种实现,第一种实现其实彻底和parallelize一致;而第二种实现能够为数据提供位置信息,而除此以外的实现和parallelize函数也是一致的,以下:code

def parallelize[T: ClassTag](
    seq: Seq[T],
    numSlices: Int = defaultParallelism): RDD[T] = withScope {
    assertNotStopped()
    new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}

def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T] = withScope {
    assertNotStopped()
    val indexToPrefs = seq.zipWithIndex.map(t => (t._2, t._1._2)).toMap
    new ParallelCollectionRDD[T](this, seq.map(_._1), seq.size, indexToPrefs)
}

都是返回ParallelCollectionRDD,并且这个makeRDD的实现不能够本身指定分区的数量,而是固定为seq参数的size大小。orm

相关文章
相关标签/搜索