Hulu机器学习问题与解答系列 | 十八:SVM – 核函数与松弛变量

嗨,又见面了~ 你可以进入公众号,点击菜单栏的“机器学习”回顾本系列的全部内容,并留言与作者交流。 今天的内容是 【SVM – 核函数与松弛变量】 场景描述 当我们在SVM中处理线性不可分的数据时,核函数可以对数据进行映射,从而使得原问题在某种度量下具有更为可分的相似度,而通过引入松弛变量,我们可以放弃一些离群点的精确分类来使分类平面不受太大的影响。将这两种技术与SVM结合起来,正是SVM分类器简
相关文章
相关标签/搜索