EC笔记:第三部分:1四、在资源管理类中当心Copying行为

  1. 场景

上一节实现了智能指针,其中的拷贝构造函数和赋值运算符是经过增长/减小指针的引用计数来操做的。可是若是是管理一个独占资源呢?咱们但愿在一个资源使用时被锁定,在使用完毕后被释放。 ios

#include <mutex> c++

#include <thread> 程序员

#include <iostream> 函数

using namespace std; spa

mutex mu; 线程

int rc=5; 设计

void thread1(){ 指针

    //mu.lock(); c++11

    rc+=5; 对象

    cout<<"thread1:"<<rc<<endl;

    //mu.unlock();

}

void thread2(){

    //mu.lock();

    rc-=5;

    cout<<"thread2:"<<rc<<endl;

    //mu.unlock();

}

 

int main(){

    thread th1(thread1);

    thread th2(thread2);

    th1.join();

    th2.join();

}

在这里,我先把互斥代码去掉,编译运行后的结果是:

C:\Users\SkyFire\Desktop>g++ temp.cpp -std=c++11

 

C:\Users\SkyFire\Desktop>a

thread1:thread2:510

 

 

C:\Users\SkyFire\Desktop>a

thread1:thread2:105

 

 

C:\Users\SkyFire\Desktop>a

thread1:thread2:105

 

 

C:\Users\SkyFire\Desktop>a

thread1:thread2:510

 

 

每次的结果都不肯定,由于没加互斥。

那么,把互斥加上:

#include <mutex>

#include <thread>

#include <iostream>

using namespace std;

mutex mu;

int rc=5;

void thread1(){

    mu.lock();

    rc+=5;

    cout<<"thread1:"<<rc<<endl;

    mu.unlock();

}

void thread2(){

    mu.lock();

    rc-=5;

    cout<<"thread2:"<<rc<<endl;

    mu.unlock();

}

 

int main(){

    thread th1(thread1);

    thread th2(thread2);

    th1.join();

    th2.join();

}

编译运行的结果是:

C:\Users\SkyFire\Desktop>g++ temp.cpp -std=c++11

 

C:\Users\SkyFire\Desktop>a

thread1:10

thread2:5

 

C:\Users\SkyFire\Desktop>a

thread1:10

thread2:5

 

C:\Users\SkyFire\Desktop>a

thread1:10

thread2:5

 

可是某些时候,咱们可能会将unlock的动做漏写(百密一疏),以下面这种:

#include <mutex>

#include <thread>

#include <iostream>

using namespace std;

mutex mu;

int rc=5;

void thread1(){

    mu.lock();

    rc+=5;

    cout<<"thread1:"<<rc<<endl;

    //mu.unlock();

}

void thread2(){

    mu.lock();

    rc-=5;

    cout<<"thread2:"<<rc<<endl;

    mu.unlock();

}

 

int main(){

    thread th1(thread1);

    thread th2(thread2);

    th1.join();

    th2.join();

}

这样的结果就是thread2里面的语句一直得不到执行,程序死锁。

编译运行:

C:\Users\SkyFire\Desktop>g++ temp.cpp -std=c++11

 

C:\Users\SkyFire\Desktop>a

thread1:10

^C

C:\Users\SkyFire\Desktop>

 

能够看到,thread2一直没有执行,后面的^C是我使用Ctrl+C中断的结果。

 

为了不这种状况,咱们使用资源管理类。

 

  1. 简单的实现

一个简单的实现:

class AutoMutex{

    private:

    mutex &mu;

    public:

        AutoMutex(mutex &t):mu(t){

            mu.lock();

        }

        ~AutoMutex(){

            mu.unlock();

        }

};

 

这个类在构造的时候会将一个互斥量锁定,而在析构时会释放掉这个互斥量。乍一看好像没什么问题。事实上,在"正常的"状况下,这段代码能够工做的很好。

 

mutex mu;

 

void mythread(){

    AutoMutex t(mu);

    cout<<"hello world"<<endl;

}

 

int main(){

    for(int i=0;i<10;++i)

        thread(mythread).detach();

    system("pause");

}

输出:

 

C:\Users\SkyFire\Desktop>g++ temp.cpp -std=c++11

 

C:\Users\SkyFire\Desktop>a

hello world

hello world

hello world

hello world

hello world

hello world

hello world

hello world

hello world

hello world

请按任意键继续. . .

 

  1. 问题

可是,若是出现一些比较调皮的程序员(暂定为小明吧)。

调皮的小明写出了以下的代码:

mutex mu;

mutex mu2;

 

void mythread(){

    AutoMutex t(mu);

    AutoMutex t2(mu2);

    t2=t;

    cout<<"hello world"<<endl;

}

 

int main(){

    for(int i=0;i<10;++i)

        thread(mythread).detach();

    system("pause");

}

这TM就尴尬了……小明将管理了两个不一样的mutex的对象相互赋值了。不过还好,这段代码是编译不经过的(小明的奸计未能得逞)。由于mutex类是不容许复制的,他的赋值运算符是删除的。(假设mutex能够复制,会产生什么?)

并且,管理两个mutex的对象的赋值没有任何意义,这个对象就是建立与销毁,并无其余任何做用,因此,对于这个类,只要简单地把拷贝构造函数和赋值运算符屏蔽就行了:

class AutoMutex{

    private:

    const AutoMutex& operator=(const AutoMutex&)=delete;

    AutoMutex(const AutoMutex&)=delete;

    mutex &mu;

    public:

        AutoMutex(mutex &t):mu(t){

            mu.lock();

        }

        ~AutoMutex(){

            mu.unlock();

        }

};

为了应对本宝宝的机智,小明又写出下面这段代码:

mutex mu;

 

void mythread(){

    AutoMutex t(mu);

    AutoMutex t2(mu);

    cout<<"hello world"<<endl;

}

 

int main(){

    for(int i=0;i<10;++i)

        thread(mythread).detach();

    system("pause");

}

不得不说,小明是很奸诈的~~~

一个互斥锁,对于一个线程来讲,只有获取和没获取两种状态,而不存在获取两次这种状态。而不存在什么获取屡次什么的状态。

咱们先看一下,对于mutex,获取屡次是个什么结果:

mutex mu;

 

void mythread(){

    mu.lock();

    mu.lock();

    cout<<"hello world"<<endl;

    mu.unlock();

    mu.unlock();

}

 

int main(){

    for(int i=0;i<10;++i)

        thread(mythread).detach();

    system("pause");

}

运行结果:

C:\Users\SkyFire\Desktop>g++ temp.cpp -std=c++11

 

C:\Users\SkyFire\Desktop>a

请按任意键继续. . .

 

既然mutex自己就是这么设计的,咱们仍是不改的好~~~

猜测mutex这样设计是为了提供PV锁机制:

下面这段代码,不加任何互斥:

int main(){

    cout<<1<<endl;

    thread([](){cout<<3<<endl;}).detach();

    cout<<2<<endl;

    thread([](){cout<<4<<endl;}).detach();

    cout<<5<<endl;

}

输出结果为:

 

C:\Users\SkyFire\Desktop>g++ temp.cpp -std=c++11

 

C:\Users\SkyFire\Desktop>a

1

3

2

54

 

彻底没有顺序可言,可是若是加上一些互斥。

mutex mu;

 

int main(){

    cout<<1<<endl;

    thread([](){cout<<3<<endl;mu.unlock();}).detach();

    mu.lock();

    cout<<2<<endl;

    mu.lock();

    thread([](){cout<<4<<endl;mu.unlock();}).detach();

    mu.lock();

    cout<<5<<endl;

    mu.unlock();

}

此时的输出结果为:

C:\Users\SkyFire\Desktop>g++ temp.cpp -std=c++11

 

C:\Users\SkyFire\Desktop>a

1

2

3

4

5

 

Perfect!!!

这正是mutex为咱们提供的特性,既然咱们是管理mutex,咱们就不应破坏这种特性。

因而~~~上面全是小明的错^_^。

 

这里实现的只是对mutex对象的管理,采用了禁止拷贝的方式,可是对其余对象的管理就不必定了,要根据对象的特性灵活管理。

常见的拷贝行为有:禁止拷贝(例如本类)、引用计数(例如上节的智能指针),可是要记住,若是实现了拷贝,必定要将全部元素所有拷贝。

相关文章
相关标签/搜索