pycharm与anaconda的使用

1.anaconda与pycharm的关系

一、pythonhtml

python自身缺乏numpy、matplotlib、scipy、scikit-learn....等一系列包,须要咱们安装pip来导入这些包才能进行相应运算(python3.5自带了get-pip.py,不需额外下载安装),在cmd终端输入:pip install numpy就能安装numpy包了。每次都额外安装所须要的包略麻烦,这时候咱们能够采用anaconda了。python

二、Anacondaweb

Anaconda(开源的Python包管理器)是一个python发行版,包含了conda、Python等180多个科学包及其依赖项。包含了大量的包,使用anaconda无需再去额外安装所需包。python3.5自带了一个解释器IDLE用来执行.py脚本,可是却不利于咱们书写调试大量的代码。常见的是用notepade++写完脚本,再用idle来执行,但却不便于调试。shell

包括如下部分:bash

Anaconda Prompt 是一个Anaconda的终端,能够便捷的操做conda环境。框架

IPython 是一个 python 的交互式 shell,比默认的python shell 好用得多,支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多颇有用的功能和函数。编辑器

Jupyter Notebook 这得从IPython 3.x版本开始提及,这是最后的大一统版本,包括notebook、qtconsole等等,从IPython 4.0版本开始IPython只集中精力作交互式shell,变得轻量化,而剩下的notebook格式,qtconsole,和notebook web应用等都分离出来统一命名为Jupyter。至此IPython和Jupyter分家。函数

Jupyter Qtconsole 调用交互式命令台。从IPython 4.0版本开始,不少IPython子命令如今变成了Jupyter子命令,如ipython notebook如今是jupyter noteboook。工具

Spyder 是一个使用Python语言的开放源代码跨平台科学运算IDE。Spyder能够跨平台,也可使用附加组件扩充,自带交互式工具以处理数据。post

三、PyCharm

PyCharm是一种Python IDE(集成工具),带有一整套能够帮助用户在使用Python语言开发时提升其效率的工具,好比调试、语法高亮、Project管理、代码跳转、智能提示、自动完成、单元测试、版本控制。此外,该IDE提供了一些高级功能,以用于支持Django框架下的专业Web开发。将anaconda中的python.exe集成到pycharm中,即可以在使用pycharm的过程当中使用到全部anaconda的包了。

四、IDE

集成开发环境(IDE,Integrated Development Environment )是用于提供程序开发环境的应用程序,通常包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务套。全部具有这一特性的软件或者软件套(组)均可以叫集成开发环境。如微软的Visual Studio系列,Borland的C++ Builder、Delphi系列等。该程序能够独立运行,也能够和其它程序并用。IDE多被用于开发HTML应用软件。例如,许多人在设计网站时使用IDE(如HomeSite、DreamWeaver等),由于不少项任务会自动生成。

发行版由我的,松散组织的团队,以及商业机构和志愿者组织编写。它们一般包括了其余的系统软件和应用软件,以及一个用来简化系统初始安装的安装工具,和让软件安装升级的集成管理器。
————————————————
版权声明:本文为CSDN博主「X_dmword」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处连接及本声明。
原文连接:https://blog.csdn.net/X_dmword/article/details/88848573


2.在pycharm中使用anaconda的不一样环境

整体而言有两种方式进行“环境”的管理:

1.在anaconda中提早准备好项目所需的环境,而后在pycharm中选择相应环境的解释器;

2.在pycharm中设定新建项目时随即生成对应的环境。

方式一:

           建立新环境:

能够在Anaconda Prompt中使用命令行的方式建立新的“环境”,也能够在Anaconda Navigator的图形界面中点击鼠标建立新的“环境”。

Prompt中:conda create --name <env_name> <package_names>

        <env_name> 即建立的环境名。建议以英文命名,且不加空格,名称两边不加尖括号“<>”。

                   <package_names> 即安装在环境中的包名。名称两边不加尖括号“<>”。

                  若是要安装指定的版本号,则只须要在包名后面以 = 和版本号的形式执行;若是要在新建立的环境中建立多个包,则直接在 <package_names> 后以空格隔开,添加多个包名便可,例如

conda create -n python3 python=3.5 numpy pandas

 


        即建立一个名为“python3”的环境,环境中安装版本为3.5的python,同时也安装了numpy和pandas。

Navigator中:

在左边列表中点击“Environments”,选择下方“create”,输入新环境的名字,等待便可。以下图:

 

 

能够看到,除了默认的base环境,我又新建了两个新的环境,准备好环境后打开pycharm,新建项目,而后选择project interpreter(项目解释器),以下图所示:

忽略3中显示的python解释器,它是用python官网的安装包安装的,而咱们须要的是上一步新建环境中的解释器。

 

 

 点击框中的4,出现以下窗口,而后按照一、2的顺序点击:

 

 

在anaconda安装路径中的envs文件夹中能够找到全部现有的“环境”,点击去以后,选择python.exe便可,最后点击肯定。

方式二:在新建项目时随即生成新的环境

在pycharm新建项目,同上,选择 project interpreter,以下图所示:

 

 

 在4的下拉框中选择conda方式,而后pycharm会自动检测到location和python version,因此这两项默认就行。

最关键的是5,conda executable查了一圈都没有人特别说明,基本都是使用我刚才说的方式一,并且还都是用的anaconda默认的base环境。须要说明,这是一种很是很差的方式,由于之因此使用anaconda,就是由于它强大的环境控制能力,能够在不一样的环境中使用不一样版本的包,若是全部项目都直接指定某一固定的解释器,那为何还要折腾anaconda?直接使用pip+virtualenv也是一样能够的。言归正传,conda executable指的是conda可执行文件(conda.exe)的位置,默认状况下为空,若是不指定,则会提示conda executable path is empty,须要手动选择或者输入。如6所示。它的位置在anaconda的安装位置的Scripts文件夹下,选择以后点击肯定便可。

须要注意的是,使用方式二随之建立的新环境的位置一样在anaconda安装路径中的envs文件夹下,也一样可使用Anaconda Prompt或者Anaconda Navigator进行环境管理和包管理,能够说是很是方便使用了。

两种方式区别的浅见:

方式一:须要提早准备好所需的环境,当项目间的包没有干扰时,能够复用其余项目的库,避免每次从新安装

方式二:每次都会生成独立的环境,不会对其余的项目形成干扰,可是每次建立项目时都会耗费较长的时间
————————————————
版权声明:本文为CSDN博主「Wang_PChao」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处连接及本声明。
原文连接:https://blog.csdn.net/JT_WPC/article/details/86355903

3.为何说anaconda中新建的环境是虚拟环境?

anaconda所谓的建立虚拟环境其实就是安装了一个真实的python环境, 只不过咱们能够经过activate,conda等命令去随意的切换咱们当前的python环境, 用不一样版本的解释器和不一样的包环境去运行python脚本.

 

4.在pycharm中使用anaconda中的库

下载anaconda后会发现它同时下载了许多的库,在spyder中能够正常使用,但在pycharm中会发现显示没有,用pip下载也会显示已有,如下是导入方法:

打开pycharm

 

 而后选择anaconda这个

 

 

若是没有,选择右上角设置,add,点ok添加(个人已有不能再添加)

 

 改变之后若是没有导入全部库,点击右边的anaconda图标(一次没有彻底导入就再点一次)

 

 

这时这个文件就可使用这些库了
若是还须要别的库,点击右边的加号,搜索下载便可

这个方法一样适用于引进别的库(好比pip下载的库)
————————————————
版权声明:本文为CSDN博主「隰有游龙」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处连接及本声明。
原文连接:https://blog.csdn.net/qq_44616044/article/details/90142037

https://blog.csdn.net/honest_boy/article/details/95222818

5.anaconda中的包如何传到pycharm中使用?

在pycharm的setting中设置

在project interpreter 中的 existing environment 中选择 anaconda3安装目录下的的 python.exe 就能够了,而后会自动加载,!最后造成如图片所示的样子!

转载于:https://www.cnblogs.com/xuying-fall/p/8298923.html

 

6.每次在anaconda中新建一个环境,都要从新安装各类库吗?

有的时候咱们在使用anaconda3 的虚拟环境时,须要配置一个相似的环境,从新配置的话太过麻烦,所以能够复制或克隆一个相似的环境,而后再相应的删减或增长依赖的包:

复制或克隆环境:

conda create -n 新环境名称–clone 被克隆环境名称

例如,经过克隆tensorflow2来建立一个称为newtensorflow的副本:

conda create -n newtensorflow–clone tensorflow2
————————————————
版权声明:本文为CSDN博主「人间兵库saleng」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处连接及本声明。
原文连接:https://blog.csdn.net/qq_42815385/article/details/88353306

查现有环境 
conda info --env

复制环境
有两种办法复制环境:

一,在本机上,直接使用

conda create -n 新环境名 --clone 旧环境名

复制既有环境

二,若是要复制到其余机器,就要考虑导出当前环境到文件,利用文件再次建立环境

1) 导出环境

首先激活要导出的环境

conda activate 环境名 

导出环境

conda env export > 环境名.yaml
利用conda env export 导出的是个yaml格式的文件,该文件记录了环境名,软件源地址以及安装包列表
2) 使用yaml配置文件建立新环境

conda env create -f 环境名.yaml
在新的机器中可直接执行上述命令,生成的环境与复制源彻底同样(包括环境名),若是想在同一台机器上复制,须要把yaml文件中的环境名修改成一个新的名字,不然会冲突。
【注】还有一种复制环境的方式

conda list --explicit > env.txt
conda create -n newenv -f env.txt
这种方式只能复制环境中以conda install安装的包,不能复制pip install安装的包,所以不建议使用。
————————————————
版权声明:本文为CSDN博主「马大哈先生」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处连接及本声明。
原文连接:https://blog.csdn.net/qq_37764129/article/details/102496746


7.既然在anaconda中能够新建各类python版本的环境,那为何还有anaconda2&3的区别呢?

 暂时不是很了解2与3的区别,可是这不是当前我应该关注的问题,多敲代码更实在。

相关文章
相关标签/搜索