网络的最大流最小割定理

什么是流(flow):

   在一个有向图中,只有出去的边没有进来的边的节点叫作源(source),只有进来的边没有出去的边的节点叫作汇(sink),其它的节点进来的边和出去的边应该是平衡的。

   边上能够加权值,假设对于一个交通图来讲,能够认为边上的权重为一条道路上的最大流量。那么对于图中任意两个节点来讲,它们之间能够存在不少路径,每条路径上能够负载的最大流量应该是这条路径上权重最小的那条边所能承载的流量(联想一下“瓶颈”这个词,或者木桶理论),那么全部的路径上所负载流量之和也就是这两个节点之间多能经过的最大流了。

 

关于最小割的定义:

首先来解释割集
在一个有权图中,源点为Vs,汇点为Vt,从Vs到Vt有不少路径能够走,每条路径都包含若干条边对吧。这些边可能只属于一条路径,也可能同时出如今两条路径中。 若是拿掉这张图中的一些边,就没法从Vs到达Vt,这些边的组合就叫作 割集。

最小割的解释:
割集有不少,每个割集中元素的权值之和成为割集容量。 全部割集容量中,最小的那个割集就叫作最小割。

 

最大流最小割定理(max flow/min cut theory):对于任意一个只有一个源和一个汇的图来讲,从源到汇的最大流等于最小割。

相关文章
相关标签/搜索