TensorFlow 2.0是对1.x版本作了一次大的瘦身,Eager Execution默认开启,而且使用Keras做为默认高级API,
这些改进大大下降的TensorFlow使用难度。html
本文主要记录了一次曲折的使用Keras+TensorFlow2.0的BatchNormalization的踩坑经历,这个坑差点要把TF2.0的新特性都毁灭殆尽,若是你在学习TF2.0的官方教程,不妨一观。git
从教程[1]https://www.tensorflow.org/alpha/tutorials/images/transfer_learning?hl=zh-cn(讲述如何Transfer Learning)提及:github
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3) # Create the base model from the pre-trained model MobileNet V2 base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False,weights='imagenet') model = tf.keras.Sequential([ base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(NUM_CLASSES) ])
简单的代码咱们就复用了MobileNetV2的结构建立了一个分类器模型,接着咱们就能够调用Keras的接口去训练模型:app
model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.summary() history = model.fit(train_batches.repeat(), epochs=20, steps_per_epoch = steps_per_epoch, validation_data=validation_batches.repeat(), validation_steps=validation_steps)
输出的结果看,一块儿都很完美:函数
Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= mobilenetv2_1.00_160 (Model) (None, 5, 5, 1280) 2257984 _________________________________________________________________ global_average_pooling2d (Gl (None, 1280) 0 _________________________________________________________________ dense (Dense) (None, 2) 1281 ================================================================= Total params: 2,259,265 Trainable params: 1,281 Non-trainable params: 2,257,984 _________________________________________________________________ Epoch 11/20 581/581 [==============================] - 134s 231ms/step - loss: 0.4208 - accuracy: 0.9484 - val_loss: 0.1907 - val_accuracy: 0.9812 Epoch 12/20 581/581 [==============================] - 114s 197ms/step - loss: 0.3359 - accuracy: 0.9570 - val_loss: 0.1835 - val_accuracy: 0.9844 Epoch 13/20 581/581 [==============================] - 116s 200ms/step - loss: 0.2930 - accuracy: 0.9650 - val_loss: 0.1505 - val_accuracy: 0.9844 Epoch 14/20 581/581 [==============================] - 114s 196ms/step - loss: 0.2561 - accuracy: 0.9701 - val_loss: 0.1575 - val_accuracy: 0.9859 Epoch 15/20 581/581 [==============================] - 119s 206ms/step - loss: 0.2302 - accuracy: 0.9715 - val_loss: 0.1600 - val_accuracy: 0.9812 Epoch 16/20 581/581 [==============================] - 115s 197ms/step - loss: 0.2134 - accuracy: 0.9747 - val_loss: 0.1407 - val_accuracy: 0.9828 Epoch 17/20 581/581 [==============================] - 115s 197ms/step - loss: 0.1546 - accuracy: 0.9813 - val_loss: 0.0944 - val_accuracy: 0.9828 Epoch 18/20 581/581 [==============================] - 116s 200ms/step - loss: 0.1636 - accuracy: 0.9794 - val_loss: 0.0947 - val_accuracy: 0.9844 Epoch 19/20 581/581 [==============================] - 115s 198ms/step - loss: 0.1356 - accuracy: 0.9823 - val_loss: 0.1169 - val_accuracy: 0.9828 Epoch 20/20 581/581 [==============================] - 116s 199ms/step - loss: 0.1243 - accuracy: 0.9849 - val_loss: 0.1121 - val_accuracy: 0.9875
然而这种写法仍是不方便Debug,咱们但愿能够精细的控制迭代的过程,并可以看到中间结果,因此咱们训练的过程改为了这样:学习
optimizer = tf.keras.optimizers.RMSprop(lr=base_learning_rate) train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') @tf.function def train_cls_step(image, label): with tf.GradientTape() as tape: predictions = model(image) loss = tf.keras.losses.SparseCategoricalCrossentropy()(label, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_accuracy(label, predictions) for images, labels in train_batches: train_cls_step(images,labels)
从新训练后,结果依然很完美!测试
可是,这时候咱们想对比一下Finetune和重头开始训练的差异,因此把构建模型的代码改为了这样:ui
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False,weights=None)
使得模型的权重随机生成,这时候训练结果就开始抽风了,Loss不降低,Accuracy稳定在50%附近游荡:spa
Step #10: loss=0.6937199831008911 acc=46.5625% Step #20: loss=0.6932525634765625 acc=47.8125% Step #30: loss=0.699873685836792 acc=49.16666793823242% Step #40: loss=0.6910845041275024 acc=49.6875% Step #50: loss=0.6935917139053345 acc=50.0625% Step #60: loss=0.6965731382369995 acc=49.6875% Step #70: loss=0.6949992179870605 acc=49.19642639160156% Step #80: loss=0.6942993402481079 acc=49.84375% Step #90: loss=0.6933775544166565 acc=49.65277862548828% Step #100: loss=0.6928421258926392 acc=49.5% Step #110: loss=0.6883170008659363 acc=49.54545593261719% Step #120: loss=0.695658802986145 acc=49.453125% Step #130: loss=0.6875559091567993 acc=49.61538314819336% Step #140: loss=0.6851695775985718 acc=49.86606979370117% Step #150: loss=0.6978713274002075 acc=49.875% Step #160: loss=0.7165156602859497 acc=50.0% Step #170: loss=0.6945627331733704 acc=49.797794342041016% Step #180: loss=0.6936900615692139 acc=49.9305534362793% Step #190: loss=0.6938323974609375 acc=49.83552551269531% Step #200: loss=0.7030564546585083 acc=49.828125% Step #210: loss=0.6926192045211792 acc=49.76190185546875% Step #220: loss=0.6932414770126343 acc=49.786930084228516% Step #230: loss=0.6924526691436768 acc=49.82337188720703% Step #240: loss=0.6882281303405762 acc=49.869789123535156% Step #250: loss=0.6877702474594116 acc=49.86249923706055% Step #260: loss=0.6933954954147339 acc=49.77163314819336% Step #270: loss=0.6944763660430908 acc=49.75694274902344% Step #280: loss=0.6945018768310547 acc=49.49776840209961%
咱们将predictions的结果打印出来,发现batch内每一个输出都是如出一辙的:code
0 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32) 1 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32) 2 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32) 3 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32) 4 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32) 5 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32) 6 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32) 7 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32) 8 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32) 9 = tf.Tensor([0.51352817 0.48647183], shape=(2,), dtype=float32)
只是修改了初始权重,为什么会产生这样的结果?
是否是训练不够充分,或者learning rate设置的不合适?
通过几轮调整,发现不管训练多久,learning rate变大变小,都没法改变这种结果
既然是权重的问题,是否是权重随机初始化的有问题,把初始权重拿出来统计了一下,一切正常
这种问题根据以前的经验,在导出Inference模型的时候BatchNormalization没有处理好会出现这种一个batch内全部结果都同样的问题。可是如何解释训练的时候为何会出现这个问题?并且为何Finetue不会出现问题呢?只是改了权重的初始值而已呀
按照这个方向去Google的一番,发现了Keras的BatchNormalization确实有不少issue,其中一个问题是在保存模型的是BatchNormalzation的moving mean和moving variance不会被保存[6]https://github.com/tensorflow/tensorflow/issues/16455,而另一个issue提到问题就和咱们问题有关系的了:
[2] https://github.com/tensorflow/tensorflow/issues/19643
[3] https://github.com/tensorflow/tensorflow/issues/23873
最后,这位做者找到了缘由,而且总结在了这里:
[4] https://pgaleone.eu/tensorflow/keras/2019/01/19/keras-not-yet-interface-to-tensorflow/
根据这个提示,咱们作了以下尝试:
改用model.fit的写法进行训练,在最初的几个epoch里面,咱们发现好的一点的是training accuracy已经开始缓慢提高了,可是validation accuracy存在原来的问题。并且经过model.predict_on_batch()拿到中间结果,发现依然仍是batch内输出都同样。
Epoch 1/20 581/581 [==============================] - 162s 279ms/step - loss: 0.6768 - sparse_categorical_accuracy: 0.6224 - val_loss: 0.6981 - val_sparse_categorical_accuracy: 0.4984 Epoch 2/20 581/581 [==============================] - 133s 228ms/step - loss: 0.4847 - sparse_categorical_accuracy: 0.7684 - val_loss: 0.6931 - val_sparse_categorical_accuracy: 0.5016 Epoch 3/20 581/581 [==============================] - 130s 223ms/step - loss: 0.3905 - sparse_categorical_accuracy: 0.8250 - val_loss: 0.6996 - val_sparse_categorical_accuracy: 0.4984 Epoch 4/20 581/581 [==============================] - 131s 225ms/step - loss: 0.3113 - sparse_categorical_accuracy: 0.8660 - val_loss: 0.6935 - val_sparse_categorical_accuracy: 0.5016
可是,随着训练的深刻,结果出现了逆转,开始变得正常了(tf.function的写法是不管怎么训练都不会变化,幸亏没有放弃治疗)(追加:其实这里仍是有问题的,继续看后面,当时就以为怪怪的,不该该收敛这么慢)
Epoch 18/20 581/581 [==============================] - 131s 226ms/step - loss: 0.0731 - sparse_categorical_accuracy: 0.9725 - val_loss: 1.4896 - val_sparse_categorical_accuracy: 0.8703 Epoch 19/20 581/581 [==============================] - 130s 225ms/step - loss: 0.0664 - sparse_categorical_accuracy: 0.9748 - val_loss: 0.6890 - val_sparse_categorical_accuracy: 0.9016 Epoch 20/20 581/581 [==============================] - 126s 217ms/step - loss: 0.0631 - sparse_categorical_accuracy: 0.9768 - val_loss: 1.0290 - val_sparse_categorical_accuracy: 0.9031
通多model.predict_on_batch()拿到的结果也和这个Accuracy也是一致的
经过上一个实验,咱们验证了确实若是只经过Keras的API去训练,是正常。更深层的缘由是什么呢?是否是BatchNomalization没有update moving mean和moving variance致使的呢?答案是Yes
咱们分别在两中训练方法先后,打印 moving mean和moving variance的值:
def get_bn_vars(collection): moving_mean, moving_variance = None, None for var in collection: name = var.name.lower() if "variance" in name: moving_variance = var if "mean" in name: moving_mean = var if moving_mean is not None and moving_variance is not None: return moving_mean, moving_variance raise ValueError("Unable to find moving mean and variance") mean, variance = get_bn_vars(model.variables) print(mean) print(variance)
咱们发现,确实若是使用model.fit()进行训练,mean和variance是在update的(虽然更新的速率看着有些奇怪),可是对于tf.function那种写法这两个值就没有被update
那这里咱们也能够解释为何Finetune不会出现问题了,由于imagenet训练的mean, variance已是一个比较好的值了,即便不更新也能够正常使用
是否是改为[4]里面说的方法构建动态的Input_Shape的模型就OK了呢?
class MyModel(Model): def __init__(self): super(MyModel, self).__init__() self.conv1 = Conv2D(32, 3, activation='relu') self.batch_norm1=BatchNormalization() self.flatten = Flatten() self.d1 = Dense(128, activation='relu') self.d2 = Dense(10, activation='softmax') def call(self, x): x = self.conv1(x) x = self.batch_norm1(x) x = self.flatten(x) x = self.d1(x) return self.d2(x) model = MyModel() #model.build((None,28,28,1)) model.summary() @tf.functiondef train_step(image, label): with tf.GradientTape() as tape: predictions = model(image) loss = loss_object(label, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) train_accuracy(label, predictions)
模型以下:
Model: "my_model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) multiple 320 _________________________________________________________________ batch_normalization_v2 (Batc multiple 128 _________________________________________________________________ flatten (Flatten) multiple 0 _________________________________________________________________ dense (Dense) multiple 2769024 _________________________________________________________________ dense_1 (Dense) multiple 1290 ================================================================= Total params: 2,770,762 Trainable params: 2,770,698 Non-trainable params: 64
从Output Shape看,构建模型没问题
跑了一遍MINST,结果也很不错!
以防万一,咱们一样测试了一下mean和variance是否被更新,然而结果出乎意料,并无!
也就是说[4]里面说的方案在咱们这里并不可行
既然咱们定位问题是在BatchNormalization这里,因此就想到BatchNormalization的training和testing时候行为是不一致的,在testing的时候moving mean和variance是不须要update的,那么会不会是tf.function的这种写法并不会自动更改这个状态呢?
查看源码,发现BatchNormalization的call()存在一个training参数,并且默认是False
Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode or in inference mode. - `training=True`: The layer will normalize its inputs using the mean and variance of the current batch of inputs. - `training=False`: The layer will normalize its inputs using the mean and variance of its moving statistics, learned during training.
因此,作了以下改进:
class MyModel(Model): def __init__(self): super(MyModel, self).__init__() self.conv1 = Conv2D(32, 3, activation='relu') self.batch_norm1=BatchNormalization() self.flatten = Flatten() self.d1 = Dense(128, activation='relu') self.d2 = Dense(10, activation='softmax') def call(self, x,training=True): x = self.conv1(x) x = self.batch_norm1(x,training=training) x = self.flatten(x) x = self.d1(x) return self.d2(x) model = MyModel() #model.build((None,28,28,1)) model.summary() @tf.functiondef train_step(image, label): with tf.GradientTape() as tape: predictions = model(image,training=True) loss = loss_object(label, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) train_accuracy(label, predictions) @tf.functiondef test_step(image, label): predictions = model(image,training=False) t_loss = loss_object(label, predictions) test_loss(t_loss) test_accuracy(label, predictions)
结果显示,moving mean和variance开始更新啦,测试Accuracy也是符合预期
因此,咱们能够肯定问题的根源在于须要指定BatchNormalization是在training仍是在testing!
3.4中方法虽然解决了咱们的问题,可是它是使用构建Model的subclass的方式,而咱们以前的MobileNetV2是基于更加灵活Keras Functional API构建的,因为没法控制call()函数的定义,没有办法灵活切换training和testing的状态,另外用Sequential的方式构建时也是同样。
[5]https://blog.keras.io/keras-as-a-simplified-interface-to-tensorflow-tutorial.html
[7]https://github.com/keras-team/keras/issues/7085
[8]https://github.com/keras-team/keras/issues/6752
从5[8]中,我了解到两个状况,
因此我首先尝试:
tf.keras.backend.set_learning_phase(True)
结果,MobileNetV2构建的模型也能够正常工做了。
并且收敛的速度彷佛比model.fit()还快了不少,结合以前model.fit()收敛慢的困惑,这里又增长的一个实验,在model.fit()的版本里面也加上这句话,发现一样收敛速度也变快了!1个epoch就能获得不错的结果了!
所以,这里又产生了一个问题model.fit()到底有没有设learning_phase状态?若是没有是怎么作moving mean和variance的update的?
第二个方法,因为教程中讲述的是如何在1.x的版本构建,而在eager execution模式下,彷佛没有办法去run这些Assign Operation。仅作参考吧
update_ops = [] for assign_op in model.updates: update_ops.append(assign_op)) #可是不知道拿到这些update_ops在eager execution模式下怎么处理呢?
总结一下,咱们从[4]找到了解决问题的启发点,可是最终证实[4]里面的问题和解决方法用到咱们这里并不能真正解决问题,问题的关键仍是在于Keras+TensorFlow2.0里面咱们如何处理在training和testing状态下行为不一致的Layer;以及对于model.fit()和tf.funtion这两种训练方法的区别,最终来看model.fit()里面彷佛包含不少诡异的行为。
最终的使用建议以下:
最后,为何TF 2.0的教程里面没有说起这些?默认你已经精通Keras了吗?[捂脸哭]
原文连接 本文为云栖社区原创内容,未经容许不得转载。