面试官再问你 HashMap 底层原理,就把这篇文章甩给他看

前言

HashMap 源码和底层原理在如今面试中是必问的。所以,咱们很是有必要搞清楚它的底层实现和思想,才能在面试中对答如流,跟面试官大战三百回合。文章较长,介绍了不少原理性的问题,但愿对你有所帮助~node

目录

本篇文章主要包括如下内容:面试

  • HashMap 的存储结构
  • 经常使用变量说明,如加载因子等
  • HashMap 的四个构造函数
  • tableSizeFor()方法及做用
  • put()方法详解
  • hash()方法,以及避免哈希碰撞的原理
  • resize()扩容机制及原理
  • get()方法
  • 为何HashMap链表会造成死循环,JDK1.8作了哪些优化

正文

说明:本篇主要以JDK1.8的源码来分析,顺带讲下和JDK1.7的一些区别。数组

HashMap存储结构

这里须要区分一下,JDK1.7和 JDK1.8以后的 HashMap 存储结构。在JDK1.7及以前,是用数组加链表的方式存储的。安全

可是,众所周知,当链表的长度特别长的时候,查询效率将直线降低,查询的时间复杂度为 O(n)。所以,JDK1.8 把它设计为达到一个特定的阈值以后,就将链表转化为红黑树。多线程

这里简单说下红黑树的特色:app

  1. 每一个节点只有两种颜色:红色或者黑色
  2. 根节点必须是黑色
  3. 每一个叶子节点(NIL)都是黑色的空节点
  4. 从根节点到叶子节点,不能出现两个连续的红色节点
  5. 从任一节点出发,到它下边的子节点的路径包含的黑色节点数目都相同

因为红黑树,是一个自平衡的二叉搜索树,所以可使查询的时间复杂度降为O(logn)。(红黑树不是本文重点,不了解的童鞋可自行查阅相关资料哈)函数

HashMap 结构示意图:post

经常使用的变量

在 HashMap源码中,比较重要的经常使用变量,主要有如下这些。还有两个内部类来表示普通链表的节点和红黑树节点。优化

//默认的初始化容量为16,必须是2的n次幂
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

//最大容量为 2^30
static final int MAXIMUM_CAPACITY = 1 << 30;

//默认的加载因子0.75,乘以数组容量获得的值,用来表示元素个数达到多少时,须要扩容。
//为何设置 0.75 这个值呢,简单来讲就是时间和空间的权衡。
//若小于0.75如0.5,则数组长度达到一半大小就须要扩容,空间使用率大大下降,
//若大于0.75如0.8,则会增大hash冲突的几率,影响查询效率。
static final float DEFAULT_LOAD_FACTOR = 0.75f;

//刚才提到了当链表长度过长时,会有一个阈值,超过这个阈值8就会转化为红黑树
static final int TREEIFY_THRESHOLD = 8;

//当红黑树上的元素个数,减小到6个时,就退化为链表
static final int UNTREEIFY_THRESHOLD = 6;

//链表转化为红黑树,除了有阈值的限制,还有另一个限制,须要数组容量至少达到64,才会树化。
//这是为了不,数组扩容和树化阈值之间的冲突。
static final int MIN_TREEIFY_CAPACITY = 64;

//存放全部Node节点的数组
transient Node<K,V>[] table;

//存放全部的键值对
transient Set<Map.Entry<K,V>> entrySet;

//map中的实际键值对个数,即数组中元素个数
transient int size;

//每次结构改变时,都会自增,fail-fast机制,这是一种错误检测机制。
//当迭代集合的时候,若是结构发生改变,则会发生 fail-fast,抛出异常。
transient int modCount;

//数组扩容阈值
int threshold;

//加载因子
final float loadFactor;					

//普通单向链表节点类
static class Node<K,V> implements Map.Entry<K,V> {
	//key的hash值,put和get的时候都须要用到它来肯定元素在数组中的位置
	final int hash;
	final K key;
	V value;
	//指向单链表的下一个节点
	Node<K,V> next;

	Node(int hash, K key, V value, Node<K,V> next) {
		this.hash = hash;
		this.key = key;
		this.value = value;
		this.next = next;
	}
}

//转化为红黑树的节点类
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
	//当前节点的父节点
	TreeNode<K,V> parent;  
	//左孩子节点
	TreeNode<K,V> left;
	//右孩子节点
	TreeNode<K,V> right;
	//指向前一个节点
	TreeNode<K,V> prev;    // needed to unlink next upon deletion
	//当前节点是红色或者黑色的标识
	boolean red;
	TreeNode(int hash, K key, V val, Node<K,V> next) {
		super(hash, key, val, next);
	}
}

HashMap 构造函数

HashMap有四个构造函数可供咱们使用,一块儿来看下:this

//默认无参构造,指定一个默认的加载因子
public HashMap() {
	this.loadFactor = DEFAULT_LOAD_FACTOR; 
}

//可指定容量的有参构造,可是须要注意当前咱们指定的容量并不必定就是实际的容量,下面会说
public HashMap(int initialCapacity) {
	//一样使用默认加载因子
	this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

//可指定容量和加载因子,可是笔者不建议本身手动指定非0.75的加载因子
public HashMap(int initialCapacity, float loadFactor) {
	if (initialCapacity < 0)
		throw new IllegalArgumentException("Illegal initial capacity: " +
										   initialCapacity);
	if (initialCapacity > MAXIMUM_CAPACITY)
		initialCapacity = MAXIMUM_CAPACITY;
	if (loadFactor <= 0 || Float.isNaN(loadFactor))
		throw new IllegalArgumentException("Illegal load factor: " +
										   loadFactor);
	this.loadFactor = loadFactor;
	//这里就是把咱们指定的容量改成一个大于它的的最小的2次幂值,如传过来的容量是14,则返回16
	//注意这里,按理说返回的值应该赋值给 capacity,即保证数组容量老是2的n次幂,为何这里赋值给了 threshold 呢?
	//先卖个关子,等到 resize 的时候再说
	this.threshold = tableSizeFor(initialCapacity);
}

//可传入一个已有的map
public HashMap(Map<? extends K, ? extends V> m) {
	this.loadFactor = DEFAULT_LOAD_FACTOR;
	putMapEntries(m, false);
}

//把传入的map里边的元素都加载到当前map
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
	int s = m.size();
	if (s > 0) {
		if (table == null) { // pre-size
			float ft = ((float)s / loadFactor) + 1.0F;
			int t = ((ft < (float)MAXIMUM_CAPACITY) ?
					 (int)ft : MAXIMUM_CAPACITY);
			if (t > threshold)
				threshold = tableSizeFor(t);
		}
		else if (s > threshold)
			resize();
		for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
			K key = e.getKey();
			V value = e.getValue();
			//put方法的具体实现,后边讲
			putVal(hash(key), key, value, false, evict);
		}
	}
}

tableSizeFor()

上边的第三个构造函数中,调用了 tableSizeFor 方法,这个方法是怎么实现的呢?

static final int tableSizeFor(int cap) {
	int n = cap - 1;
	n |= n >>> 1;
	n |= n >>> 2;
	n |= n >>> 4;
	n |= n >>> 8;
	n |= n >>> 16;
	return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

咱们以传入参数为14 来举例,计算这个过程。

首先,14传进去以后先减1,n此时为13。而后是一系列的无符号右移运算。

//13的二进制
0000 0000 0000 0000 0000 0000 0000 1101 
//无右移1位,高位补0
0000 0000 0000 0000 0000 0000 0000 0110 
//而后把它和原来的13作或运算获得,此时的n值
0000 0000 0000 0000 0000 0000 0000 1111 
//再以上边的值,右移2位
0000 0000 0000 0000 0000 0000 0000 0011
//而后和第一次或运算以后的 n 值再作或运算,此时获得的n值
0000 0000 0000 0000 0000 0000 0000 1111
...
//咱们会发现,再执行右移 4,8,16位,一样n的值不变
//当n小于0时,返回1,不然判断是否大于最大容量,是的话返回最大容量,不然返回 n+1
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
//很明显咱们这里返回的是 n+1 的值,
0000 0000 0000 0000 0000 0000 0000 1111
+                                     1
0000 0000 0000 0000 0000 0000 0001 0000

将它转为十进制,就是 2^4 = 16 。咱们会发现一个规律,以上的右移运算,最终会把最低位的值都转化为 1111 这样的结构,而后再加1,就是1 0000 这样的结构,它必定是 2的n次幂。所以,这个方法返回的就是大于当前传入值的最小(最接近当前值)的一个2的n次幂的值。

put()方法详解

//put方法,会先调用一个hash()方法,获得当前key的一个hash值,
//用于肯定当前key应该存放在数组的哪一个下标位置
//这里的 hash方法,咱们姑且先认为是key.hashCode(),其实不是的,一下子细讲
public V put(K key, V value) {
	return putVal(hash(key), key, value, false, true);
}

//把hash值和当前的key,value传入进来
//这里onlyIfAbsent若是为true,代表不能修改已经存在的值,所以咱们传入false
//evict只有在方法 afterNodeInsertion(boolean evict) { }用到,能够看到它是一个空实现,所以不用关注这个参数
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
			   boolean evict) {
	Node<K,V>[] tab; Node<K,V> p; int n, i;
	//判断table是否为空,若是空的话,会先调用resize扩容
	if ((tab = table) == null || (n = tab.length) == 0)
		n = (tab = resize()).length;
	//根据当前key的hash值找到它在数组中的下标,判断当前下标位置是否已经存在元素,
	//若没有,则把key、value包装成Node节点,直接添加到此位置。
	// i = (n - 1) & hash 是计算下标位置的,为何这样算,后边讲
	if ((p = tab[i = (n - 1) & hash]) == null)
		tab[i] = newNode(hash, key, value, null);
	else { 
		//若是当前位置已经有元素了,分为三种状况。
		Node<K,V> e; K k;
		//1.当前位置元素的hash值等于传过来的hash,而且他们的key值也相等,
		//则把p赋值给e,跳转到①处,后续须要作值的覆盖处理
		if (p.hash == hash &&
			((k = p.key) == key || (key != null && key.equals(k))))
			e = p;
		//2.若是当前是红黑树结构,则把它加入到红黑树 
		else if (p instanceof TreeNode)
			e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
		else {
		//3.说明此位置已存在元素,而且是普通链表结构,则采用尾插法,把新节点加入到链表尾部
			for (int binCount = 0; ; ++binCount) {
				if ((e = p.next) == null) {
					//若是头结点的下一个节点为空,则插入新节点
					p.next = newNode(hash, key, value, null);
					//若是在插入的过程当中,链表长度超过了8,则转化为红黑树
					if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
						treeifyBin(tab, hash);
					//插入成功以后,跳出循环,跳转到①处
					break;
				}
				//若在链表中找到了相同key的话,直接退出循环,跳转到①处
				if (e.hash == hash &&
					((k = e.key) == key || (key != null && key.equals(k))))
					break;
				p = e;
			}
		}
		//① 此时e有两种状况
		//1.说明发生了碰撞,e表明的是旧值,所以节点位置不变,可是须要替换为新值
		//2.说明e是插入链表或者红黑树,成功后的新节点
		if (e != null) { // existing mapping for key
			V oldValue = e.value;
			//用新值替换旧值,并返回旧值。
			//oldValue为空,说明e是新增的节点或者也有可能旧值原本就是空的,由于hashmap可存空值
			if (!onlyIfAbsent || oldValue == null)
				e.value = value;
			//看方法名字便可知,这是在node被访问以后须要作的操做。其实此处是一个空实现,
			//只有在 LinkedHashMap才会实现,用于实现根据访问前后顺序对元素进行排序,hashmap不提供排序功能
			// Callbacks to allow LinkedHashMap post-actions
			//void afterNodeAccess(Node<K,V> p) { }
			afterNodeAccess(e);
			return oldValue;
		}
	}
	//fail-fast机制
	++modCount;
	//若是当前数组中的元素个数超过阈值,则扩容
	if (++size > threshold)
		resize();
	//一样的空实现
	afterNodeInsertion(evict);
	return null;
}

hash()计算原理

前面 put 方法中说到,须要先把当前key进行哈希处理,咱们看下这个方法是怎么实现的。

static final int hash(Object key) {
	int h;
	return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

这里,会先判断key是否为空,若为空则返回0。这也说明了hashMap是支持key传 null 的。若非空,则先计算key的hashCode值,赋值给h,而后把h右移16位,并与原来的h进行异或处理。为何要这样作,这样作有什么好处呢?

咱们知道,hashCode()方法继承自父类Object,它返回的是一个 int 类型的数值,能够保证同一个应用单次执行的每次调用,返回结果都是相同的(这个说明能够在hashCode源码上找到),这就保证了hash的肯定性。在此基础上,再进行某些固定的运算,确定结果也是能够肯定的。

我随便运行一段程序,把它的 hashCode的二进制打印出来,以下。

public static void main(String[] args) {
    Object o = new Object();
    int hash = o.hashCode();
    System.out.println(hash);
    System.out.println(Integer.toBinaryString(hash));

}
//1836019240
//1101101011011110110111000101000

而后,进行 (h = key.hashCode()) ^ (h >>> 16) 这一段运算。

//h原来的值
0110 1101 0110 1111 0110 1110 0010 1000
//无符号右移16位,其实至关于把低位16位舍去,只保留高16位
0000 0000 0000 0000 0110 1101 0110 1111
//而后高16位和原 h进行异或运算
0110 1101 0110 1111 0110 1110 0010 1000
^
0000 0000 0000 0000 0110 1101 0110 1111
=
0110 1101 0110 1111 0000 0011 0100 0111

能够看到,其实至关于,咱们把高16位值和当前h的低16位进行了混合,这样能够尽可能保留高16位的特征,从而下降哈希碰撞的几率。

思考一下,为何这样作,就能够下降哈希碰撞的几率呢?先别着急,咱们须要结合 i = (n - 1) & hash 这一段运算来理解。

** (n-1) & hash 做用**

//②
//这是 put 方法中用来根据hash()值寻找在数组中的下标的逻辑,
//n为数组长度, hash为调用 hash()方法混合处理以后的hash值。
i = (n - 1) & hash

咱们知道,若是给定某个数值,去找它在某个数组中的下标位置时,直接用模运算就能够了(假设数组值从0开始递增)。如,我找 14 在数组长度为16的数组中的下标,即为 14 % 16,等于14 。 18的位置即为 18%16,等于2。

而②中,就是取模运算的位运算形式。以18%16为例

//18的二进制
0001 0010
//16 -1 即 15的二进制
0000 1111
//与运算以后的结果为
0000 0010
// 能够看到,上边的结果转化为十进制就是 2 。
//其实咱们会发现一个规律,由于n是2的n次幂,所以它的二进制表现形式确定是相似于
0001 0000
//这样的形式,只有一个位是1,其余位都是0。而它减 1 以后的形式就是相似于
0000 1111 
//这样的形式,高位都是0,低位都是1,所以它和任意值进行与运算,结果值确定在这个区间内
0000 0000  ~  0000 1111
//也就是0到15之间,(以n为16为例)
//所以,这个运算就能够实现取模运算,并且位运算还有个好处,就是速度比较快。

为何高低位异或运算能够减小哈希碰撞

咱们想象一下,假如用 key 原来的hashCode值,直接和 (n-1) 进行与运算来求数组下标,而不进行高低位混合运算,会产生什么样的结果。

//例如我有另一个h2,和原来的 h相比较,高16位有很大的不一样,可是低16位类似度很高,甚至相同的话。
//原h值
0110 1101 0110 1111 0110 1110 0010 1000
//另一个h2值
0100 0101 1110 1011 0110 0110 0010 1000
// n -1 ,即 15 的二进制
0000 0000 0000 0000 0000 0000 0000 1111
//能够发现 h2 和 h 的高位不相同,可是低位类似度很是高。
//他们分别和 n -1 进行与运算时,获得的结果倒是相同的。(此处n假设为16)
//由于 n-1 的高16位都是0,无论 h 的高 16 位是什么,与运算以后,都不影响最终结果,高位必定全是 0
//所以,哈希碰撞的几率就大大增长了,而且 h 的高16 位特征全都丢失了。

爱思考的同窗可能就会有疑问了,我进行高低16位混合运算,是能够的,这样能够保证尽可能减小高区位的特征。那么,为何选择用异或运算呢,我用与、或、非运算不行吗?

这是有必定的道理的。咱们看一个表格,就能明白了。

能够看到两个值进行与运算,结果会趋向于0;或运算,结果会趋向于1;而只有异或运算,0和1的比例能够达到1:1的平衡状态。(非呢?别扯犊子了,两个值怎么作非运算。。。)

因此,异或运算以后,可让结果的随机性更大,而随机性大了以后,哈希碰撞的几率固然就更小了。

以上,就是为何要对一个hash值进行高低位混合,而且选择异或运算来混合的缘由。

resize() 扩容机制

在上边 put 方法中,咱们会发现,当数组为空的时候,会调用 resize 方法,当数组的 size 大于阈值的时候,也会调用 resize方法。 那么看下 resize 方法都作了哪些事情吧。

final Node<K,V>[] resize() {
	//旧数组
	Node<K,V>[] oldTab = table;
	//旧数组的容量
	int oldCap = (oldTab == null) ? 0 : oldTab.length;
	//旧数组的扩容阈值,注意看,这里取的是当前对象的 threshold 值,下边的第2种状况会用到。
	int oldThr = threshold;
	//初始化新数组的容量和阈值,分三种状况讨论。
	int newCap, newThr = 0;
	//1.当旧数组的容量大于0时,说明在这以前确定调用过 resize扩容过一次,才会致使旧容量不为0。
	//为何这样说呢,以前我在 tableSizeFor 卖了个关子,须要注意的是,它返回的值是赋给了 threshold 而不是 capacity。
	//咱们在这以前,压根就没有在任何地方看到过,它给 capacity 赋初始值。
	if (oldCap > 0) {
		//容量达到了最大值
		if (oldCap >= MAXIMUM_CAPACITY) {
			threshold = Integer.MAX_VALUE;
			return oldTab;
		}
		//新数组的容量和阈值都扩大原来的2倍
		else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
				 oldCap >= DEFAULT_INITIAL_CAPACITY)
			newThr = oldThr << 1; // double threshold
	}
	//2.到这里,说明 oldCap <= 0,而且 oldThr(threshold) > 0,这就是 map 初始化的时候,第一次调用 resize的状况
	//而 oldThr的值等于 threshold,此时的 threshold 是经过 tableSizeFor 方法获得的一个2的n次幂的值(咱们以16为例)。
	//所以,须要把 oldThr 的值,也就是 threshold ,赋值给新数组的容量 newCap,以保证数组的容量是2的n次幂。
	//因此咱们能够得出结论,当map第一次 put 元素的时候,就会走到这个分支,把数组的容量设置为正确的值(2的n次幂)
	//可是,此时 threshold 的值也是2的n次幂,这不对啊,它应该是数组的容量乘以加载因子才对。别着急,这个会在③处理。
	else if (oldThr > 0) // initial capacity was placed in threshold
		newCap = oldThr;
	//3.到这里,说明 oldCap 和 oldThr 都是小于等于0的。也说明咱们的map是经过默认无参构造来建立的,
	//因而,数组的容量和阈值都取默认值就能够了,即 16 和 12。
	else {               // zero initial threshold signifies using defaults
		newCap = DEFAULT_INITIAL_CAPACITY;
		newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
	}
	//③ 这里就是处理第2种状况,由于只有这种状况 newThr 才为0,
	//所以计算 newThr(用 newCap即16 乘以加载因子 0.75,获得 12) ,并把它赋值给 threshold
	if (newThr == 0) {
		float ft = (float)newCap * loadFactor;
		newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
				  (int)ft : Integer.MAX_VALUE);
	}
	//赋予 threshold 正确的值,表示数组下次须要扩容的阈值(此时就把原来的 16 修正为了 12)。
	threshold = newThr;
	@SuppressWarnings({"rawtypes","unchecked"})
		Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
	table = newTab;
	//若是原来的数组不为空,那么咱们就须要把原来数组中的元素从新分配到新的数组中
	//若是是第2种状况,因为是第一次调用resize,此时数组确定是空的,所以也就不须要从新分配元素。
	if (oldTab != null) {
		//遍历旧数组
		for (int j = 0; j < oldCap; ++j) {
			Node<K,V> e;
			//取到当前下标的第一个元素,若是存在,则分三种状况从新分配位置
			if ((e = oldTab[j]) != null) {
				oldTab[j] = null;
				//1.若是当前元素的下一个元素为空,则说明此处只有一个元素
				//则直接用它的hash()值和新数组的容量取模就能够了,获得新的下标位置。
				if (e.next == null)
					newTab[e.hash & (newCap - 1)] = e;
				//2.若是是红黑树结构,则拆分成黑树,必要时有可能退化为链表
				else if (e instanceof TreeNode)
					((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
				//3.到这里说明,这是一个长度大于 1 的普通链表,则须要计算并
				//判断当前位置的链表是否须要移动到新的位置
				else { // preserve order
					// loHead 和 loTail 分别表明链表旧位置的头尾节点
					Node<K,V> loHead = null, loTail = null;
					// hiHead 和 hiTail 分别表明链表移动到新位置的头尾节点
					Node<K,V> hiHead = null, hiTail = null;
					Node<K,V> next;
					do {
						next = e.next;
						//若是当前元素的hash值和oldCap作与运算为0,则原位置不变
						if ((e.hash & oldCap) == 0) {
							if (loTail == null)
								loHead = e;
							else
								loTail.next = e;
							loTail = e;
						}
						//不然,须要移动到新的位置
						else {
							if (hiTail == null)
								hiHead = e;
							else
								hiTail.next = e;
							hiTail = e;
						}
					} while ((e = next) != null);
					//原位置不变的一条链表,数组下标不变
					if (loTail != null) {
						loTail.next = null;
						newTab[j] = loHead;
					}
					//移动到新位置的一条链表,数组下标为原下标加上旧数组的容量
					if (hiTail != null) {
						hiTail.next = null;
						newTab[j + oldCap] = hiHead;
					}
				}
			}
		}
	}
	return newTab;
}

上边还有一个很是重要的运算,咱们没有讲解。就是下边这个判断,它用于把原来的普通链表拆分为两条链表,位置不变或者放在新的位置。

if ((e.hash & oldCap) == 0) {} else {}

咱们以原数组容量16为例,扩容以后容量为32。说明下为何这样计算。

仍是用以前的hash值举例。

//e.hash值
0110 1101 0110 1111 0110 1110 0010 1000
//oldCap值,即16
0000 0000 0000 0000 0000 0000 0001 0000 
//作与运算,咱们会发现结果不是0就是非0,
//并且它取决于 e.hash 二进制位的倒数第五位是 0 仍是 1,
//若倒数第五位为0,则结果为0,若倒数第五位为1,则结果为非0。
//那这个和新数组有什么关系呢?
//别着急,咱们看下新数组的容量是32,若是求当前hash值在新数组中的下标,则为
// e.hash &( 32 - 1) 这样的运算 ,即 hash 与 31 进行与运算,
0110 1101 0110 1111 0110 1110 0010 1000 
&
0000 0000 0000 0000 0000 0000 0001 1111 
=
0000 0000 0000 0000 0000 0000 0000 1000
//接下来,咱们对比原来的下标计算结果和新的下标结果,看图

看下面的图,咱们观察,hash值和旧数组进行与运算的结果 ,跟新数组的与运算结果有什么不一样。

会发现一个规律:

若hash值的倒数第五位是0,则新下标与旧下标结果相同,都为 0000 1000

若hash值的倒数第五位是1,则新下标(0001 1000)与旧下标(0000 1000)结果值相差了 16 。

所以,咱们就能够根据 (e.hash & oldCap == 0) 这个判断的真假来决定,当前元素应该在原来的位置不变,仍是在新的位置(原位置 + 16)。

若是,上边的推理仍是不明白的话,我再举个简单的例子。

18%16=2     18%32=18
34%16=2     34%32=2
50%16=2     50%32=18

怎么样,发现规律没,有没有那个感受了?

计算中的18,34 ,50 其实就至关于 e.hash 值,和新旧数组作取模运算,获得的结果,要么就是原来的位置不变,要么就是原来的位置加上旧数组的长度。

get()方法

有了前面的基础,get方法就比较简单了。

public V get(Object key) {
	Node<K,V> e;
	//若是节点为空,则返回null,不然返回节点的value。这也说明,hashMap是支持value为null的。
	//所以,咱们就明白了,为何hashMap支持Key和value都为null
	return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
	Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
	//首先要确保数组不能为空,而后取到当前hash值计算出来的下标位置的第一个元素
	if ((tab = table) != null && (n = tab.length) > 0 &&
		(first = tab[(n - 1) & hash]) != null) {
		//若hash值和key都相等,则说明咱们要找的就是第一个元素,直接返回
		if (first.hash == hash && // always check first node
			((k = first.key) == key || (key != null && key.equals(k))))
			return first;
		//若是不是的话,就遍历当前链表(或红黑树)
		if ((e = first.next) != null) {
			//若是是红黑树结构,则找到当前key所在的节点位置
			if (first instanceof TreeNode)
				return ((TreeNode<K,V>)first).getTreeNode(hash, key);
			//若是是普通链表,则向后遍历查找,直到找到或者遍历到链表末尾为止。
			do {
				if (e.hash == hash &&
					((k = e.key) == key || (key != null && key.equals(k))))
					return e;
			} while ((e = e.next) != null);
		}
	}
	//不然,说明没有找到,返回null
	return null;
}

为何HashMap链表会造成死循环

准确的讲应该是 JDK1.7 的 HashMap 链表会有死循环的可能,由于JDK1.7是采用的头插法,在多线程环境下有可能会使链表造成环状,从而致使死循环。JDK1.8作了改进,用的是尾插法,不会产生死循环。

那么,链表是怎么造成环状的呢?

关于这一点的解释,我发现网上文章抄来抄去的,并且都来自左耳朵耗子,更惊奇的是,连配图都是如出一辙的。(别问我为何知道,由于我也看过耗子叔的文章,哈哈。然而,菜鸡的我,那篇文章,并无看懂。。。)

我实在看不下去了,因而一怒之下,就有了这篇文章。我会照着源码一步一步的分析变量之间的关系怎么变化的,并有配图哦。

咱们从 put()方法开始,最终找到线程不安全的那个方法。这里省略中间不重要的过程,我只把方法的跳转流程贴出来:

//添加元素方法 -> 添加新节点方法 -> 扩容方法 -> 把原数组元素从新分配到新数组中
put()  --> addEntry()  --> resize() -->  transfer()

问题就发生在 transfer 这个方法中。

图1

咱们假设,原数组容量只有2,其中一条链表上有两个元素 A,B,以下图

如今,有两个线程都执行 transfer 方法。每一个线程都会在它们本身的工做内存生成一个newTable 的数组,用于存储变化后的链表,它们互不影响(这里互不影响,指的是两个新数组自己互不影响)。可是,须要注意的是,它们操做的数据倒是同一份。

由于,真正的数组中的内容在堆中存储,它们指向的是同一份数据内容。就至关于,有两个不一样的引用 X,Y,可是它们都指向同一个对象 Z。这里 X、Y就是两个线程不一样的新数组,Z就是堆中的A,B 等元素对象。

假设线程一执行到了上图1中所指的代码①处,刚好 CPU 时间片到了,线程被挂起,不能继续执行了。 记住此时,线程一中记录的 e = A , e.next = B。

而后线程二正常执行,扩容后的数组长度为 4, 假设 A,B两个元素又碰撞到了同一个桶中。而后,经过几回 while 循环后,采用头插法,最终呈现的结构以下:

此时,线程一解挂,继续往下执行。注意,此时线程一,记录的仍是 e = A,e.next = B,由于它还未感知到最新的变化。

咱们主要关注图1中标注的①②③④处的变量变化:

/**
* next = e.next
* e.next = newTable[i]
* newTable[i] = e;
* e = next;
*/

//第一次循环,(伪代码)
e=A;next=B;
e.next=null //此时线程一的新数组刚初始化完成,尚未元素
newTab[i] = A->null //把A节点头插到新数组中
e=B; //下次循环的e值

第一次循环结束后,线程一新数组的结构以下图:

而后,因为 e=B,不为空,进入第二次循环。

//第二次循环
e=B;next=A;  //此时A,B的内容已经被线程二修改成 B->A->null,而后被线程一读到,因此B的下一个节点指向A
e.next=A->null  // A->null 为第一次循环后线程一新数组的结构
newTab[i] = B->A->null //新节点B插入以后,线程一新数组的结构
e=A;  //下次循环的 e 值

第二次循环结束后,线程一新数组的结构以下图:

此时,因为 e=A,不为空,继续循环。

//第三次循环
e=A;next=null;  // A节点后边已经没有节点了
e.next= B->A->null  // B->A->null 为第二次循环后线程一新数组的结构
//咱们把A插入后,抽象的表达为 A->B->A->null,可是,A只能是一个,不能分身啊
//所以其实是 e(A).next指向发生了变化,A的 next 由指向 null 改成指向了 B,
//而 B 自己又指向A,所以A和B互相指向,成环
newTab[i] = A->B 且 B->A 
e=next=null; //e此时为空,结束循环

第三次循环结束后,看下图,A的指向由 null ,改成指向为 B,所以 A 和 B 之间成环。

这时,有的同窗可能就会问了,就算他们成环了,又怎样,跟死循环有什么关系?

咱们看下 get() 方法(最终调用 getEntry 方法),

能够看到查找元素时,只要 e 不为空,就会一直循环查找下去。如有某个元素 C 的 hash 值也落在了和 A,B元素同一个桶中,则会因为, A,B互相指向,e.next 永远不为空,就会造成死循环。

结语

若是本文对你有用,欢迎关注我哦~

相关文章
相关标签/搜索