MR程序重要组件-combiner

    用一句简单的话语描述combiner组件做用:下降map任务输出,减小reduce任务数量,从而下降网络负载java

    工做机制:apache

        Map任务容许在提交给Reduce任务以前在本地执行一次汇总的操做,那就是combiner组件,combiner组件的行为模式和Reduce同样,都是接收key/values,产生key/value输出网络

        

    注意:app

    一、combiner的输出是reduce的输入ide

    二、若是combiner是可插拔的 ,那么combiner毫不能改变最终结果oop

    三、combiner是一个优化组件,可是并非全部地方都能用到,因此combiner只能用于reduce的输入、输出key/value类型彻底一致且不影响最终结果的场景。优化

    例子:WordCount程序中,经过统计每个单词出现的次数,咱们能够首先经过Map任务本地进行一次汇总(Combiner),而后将汇总的结果交给Reduce,完成各个Map任务存在相同KEY的数据进行一次总的汇总,图:spa

    

Combiner代码:
code

    Combiner类,直接打开Combiner类源码是直接继承Reducer类,因此咱们直接继承Reducer类便可,最终在提交时指定我们定义的Combiner类便可orm

package com.itheima.hadoop.mapreduce.combiner;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountCombiner extends
        Reducer<Text, LongWritable, Text, LongWritable> {

    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context)
            throws IOException, InterruptedException {
        long count = 0 ;
        for (LongWritable value : values) {
            count += value.get();
        }
        context.write(key, new LongWritable(count));
    }

}

Mapper类:

package com.itheima.hadoop.mapreduce.mapper;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordCountCombinerMapper extends
        Mapper<LongWritable, Text, Text, LongWritable> {

    public void map(LongWritable key, Text value, Context context)
            throws java.io.IOException, InterruptedException {
        
        String line = value.toString(); //获取一行数据
        String[] words = line.split(" "); //获取各个单词
        for (String word : words) {
            // 将每个单词写出去
            context.write(new Text(word), new LongWritable(1));
        }
        
        
        
    }

}

驱动类:

package com.itheima.hadoop.drivers;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;

import com.itheima.hadoop.mapreduce.combiner.WordCountCombiner;
import com.itheima.hadoop.mapreduce.mapper.WordCountCombinerMapper;

public class WordCountCombinerDriver extends Configured implements Tool{

    @Override
    public int run(String[] args) throws Exception {
        /**
         * 提交五重奏:
         * 一、产生做业
         * 二、指定MAP/REDUCE
         * 三、指定MAPREDUCE输出数据类型
         * 四、指定路径
         * 五、提交做业
         */
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        job.setJarByClass(WordCountCombinerDriver.class);
        job.setMapperClass(WordCountCombinerMapper.class);
        
        /***此处中间小插曲:combiner组件***/
        job.setCombinerClass(WordCountCombiner.class);
        /***此处中间小插曲:combiner组件***/
        
        //reduce逻辑和combiner逻辑一致且combiner又是reduce的子类
        job.setReducerClass(WordCountCombiner.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        return job.waitForCompletion(true) ? 0 : 1;
    }

}

主类:

package com.itheima.hadoop.runner;

import org.apache.hadoop.util.ToolRunner;

import com.itheima.hadoop.drivers.WordCountCombinerDriver;

public class WordCountCombinerRunner {

    public static void main(String[] args) throws Exception {
        
        int res = ToolRunner.run(new WordCountCombinerDriver(), args);
        System.exit(res);
    }
}

运行结果:

相关文章
相关标签/搜索