http://www.javashuo.com/article/p-otgcommc-gu.htmlhtml
以前为了配置tensorflow-gpu的环境又是装cuda,又是装cudnn,还有tensoflow-gpu等等,,由于当时也是第一次搭建这个环境,因此彻底是按照别人的搭建方法来一步一步的弄得,,后来我在给室友安装环境的时候,发现cuda,cudnn什么的彻底不用本身安装,,,所有交给 anaconda3 (好东西)就好了python
几乎最后全部的东西都是用这个完成的,,因此先去安装这玩意,,git
直接官网下载就好了,,安装的时候记得选择 PATH 配置,,否则以后还得本身去弄环境变量,,shell
而后在 powershell 里检查一下确实配置成功就好了 conda -V
数组
由于个人电脑是 win10x64+gtx1050,,因此选择安装 tensorflow-gpu-1.9.0版的,,gpu版的到时候训练模型的时候跑的很快,,(大概1s2-3张照片吧),若是用cpu跑的话有些慢,,1张照片可能要2s左右,,,app
打开powsershell,,(千万不要换源,,千万不要换源,,千万不要换源,,less
conda create -n [name] python=3.5 tensorflow-gpu=1.9.0
可能这一步会很慢,,可是建议不要去换源,,由于会出现下的东西不全,最后可能不能使用gpu版的tensorflow,,,dom
输完这段命令后,,等一会会出现一些要安装的东西列表,,这时主要看一下有没有python, tensorflow-gpu, cudnn, cudatoolkit,,,都有的话就y肯定等就好了,,,ide
环境的名字随便起,,函数
由于这时是powershell下,,,激活环境会不成功,,因此直接切换到cmd模式就好了,,输 cmd
,,,
activate [name]
这时会发现前面多了一个 ([name])
的东西,表示激活环境成功,,,
而后再测试一下python下能不能调用 tensorflow-gpu 版,,测试的方法能够参考个人上一篇博客里后面那一部份内容 ,,,
前面的准备工做弄好以后就能够运行一个简单的实例看一下在这个环境下的运行状况,,,
下面的python程序是学长给个人,,而后我发现学长的程序是这个博主写的项目,,其中也有个人一些改动,,下面会提到,,
下面的操做都是在刚刚建立的环境下操做的,,,不然的话会是anaconda3默认的base环境下,,,
由于这我的脸识别的实现用到了 opencv, dlib等等,,因此先安装这些,,
conda install opencv
这个玩意的安装有点坑,,有时貌似直接安装会安装不上,,会提示没有 cmake
这个包管理软件,,因此要先安装cmake,,建议是在anaconda3主程序(开始菜单里找 Anaconda Navigator)中找到你的那个环境,,而后再 uninstall 中找到 cmake 而后安装,,,
可是这样可能仍是安装不了dlib,,不管是用conda仍是pip安装,,
conda install dlib pip install dlib
后来我找到一个解决方法,,去下载 dlib****.whl
而后本地安装,,
再 DownloadFiles 中找到一个这个东西,,
dlib-19.1.0-cp35-cp35m-win_amd64.whl
而后放到你如今的路径下,,pip install dlib-19.1.0-cp35-cp35m-win_amd64.whl
应该这样就能够安装上了dlib,,,固然你能够用其余的方法安装,,网上也有不少解决方法,,,也有可能直接用 pip 就能安装上(好比个人电脑就能,,室友的就会出现上面的错误,,得绕一个弯子)
这个简单,,会在训练那一步用到
pip install sklearn
这一步可使用 dlib 的人脸识别裁剪,也可使用opencv自带的来使用,,和室友试验了一下,发现opencv的虽然相对较快,可是识别不佳,并且一样大小的视频最后生成的照片个数也不多(也有多是那里没写好),,
原博主的程序是拍一张照片而后识别一张裁剪一张,,这样很慢,,因此我把它改为了录一段视频,而后对于每一帧来识别裁剪,,这样贼快,,,(按q退出录制后自动进行后面的内容
注意复制代码后要适当的改一些参数,,好比说opencv中hear的参数等等
import cv2 import os import dlib import sys import random import shutil def make_video(): # 录制视频 shutil.rmtree('./my_faces') """使用opencv录像""" cap = cv2.VideoCapture(0) # 默认的摄像头 # 指定视频代码 fourcc = cv2.VideoWriter_fourcc(*"DIVX") out = cv2.VideoWriter('233.avi', fourcc, 20.0, (640,480)) while(cap.isOpened()): ret, frame = cap.read() if ret: out.write(frame) # cv2.imshow('frame',frame) # 等待按键q操做关闭摄像头 if cv2.waitKey(1) & 0xFF == ord('q'): break else: break cap.release() out.release() cv2.destroyAllWindows() # 改变图片的亮度与对比度 def relight(img, light=1, bias=0): w = img.shape[1] h = img.shape[0] #image = [] for i in range(0,w): for j in range(0,h): for c in range(3): tmp = int(img[j,i,c]*light + bias) if tmp > 255: tmp = 255 elif tmp < 0: tmp = 0 img[j,i,c] = tmp return img def hhh(): # 利用dlib来实现 output_dir = './my_faces' size = 64 if not os.path.exists(output_dir): os.makedirs(output_dir) #使用dlib自带的frontal_face_detector做为咱们的特征提取器 detector = dlib.get_frontal_face_detector() # 打开摄像头 参数为输入流,能够为摄像头或视频文件 #camera = cv2.VideoCapture(0) camera = cv2.VideoCapture("233.avi") index = 1 while True: if (index <= 10000): print('Being processed picture %s' % index) # 从摄像头读取照片 success, img = camera.read() # 转为灰度图片 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 使用detector进行人脸检测 dets = detector(gray_img, 1) if success == False: break for i, d in enumerate(dets): x1 = d.top() if d.top() > 0 else 0 y1 = d.bottom() if d.bottom() > 0 else 0 x2 = d.left() if d.left() > 0 else 0 y2 = d.right() if d.right() > 0 else 0 face = img[x1:y1,x2:y2] # 调整图片的对比度与亮度, 对比度与亮度值都取随机数,这样能增长样本的多样性 face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50)) face = cv2.resize(face, (size,size)) cv2.imshow('image', face) cv2.imwrite(output_dir+'/'+str(index)+'.jpg', face) index += 1 key = cv2.waitKey(30) & 0xff if key == 27: break else: print('Finished!') break def hhhh(): # 利用opencv来实现 output_dir = './my_faces' size = 64 if not os.path.exists(output_dir): os.makedirs(output_dir) # 获取分类器 haar = cv2.CascadeClassifier(r'G:\DIP\Anaconda3\envs\test1\Library\etc\haarcascades\haarcascade_frontalface_default.xml') # 打开摄像头 参数为输入流,能够为摄像头或视频文件 camera = cv2.VideoCapture("233.avi") n = 1 while 1: if (n <= 10000): print('It`s processing %s image.' % n) # 读帧 success, img = camera.read() gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = haar.detectMultiScale(gray_img, 1.3, 5) for f_x, f_y, f_w, f_h in faces: face = img[f_y:f_y+f_h, f_x:f_x+f_w] face = cv2.resize(face, (64,64)) ''' if n % 3 == 1: face = relight(face, 1, 50) elif n % 3 == 2: face = relight(face, 0.5, 0) ''' face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50)) cv2.imshow('img', face) cv2.imwrite(output_dir+'/'+str(n)+'.jpg', face) n+=1 key = cv2.waitKey(30) & 0xff if key == 27: break else: break if __name__ == '__main__': make_video() hhh()
这一步主要是识别裁剪那堆别人的照片
先去下那一堆照片,,而后解压,重命名为 input_img
(只是验证一下整个项目的效果的话能够删去一半的照片,,否则可能得跑个10分钟左右,,,
# -*- codeing: utf-8 -*- import sys import os import cv2 import dlib input_dir = './input_img' output_dir = './other_faces' size = 64 if not os.path.exists(output_dir): os.makedirs(output_dir) #使用dlib自带的frontal_face_detector做为咱们的特征提取器 detector = dlib.get_frontal_face_detector() index = 1 for (path, dirnames, filenames) in os.walk(input_dir): for filename in filenames: if filename.endswith('.jpg'): print('Being processed picture %s' % index) img_path = path+'/'+filename # 从文件读取图片 img = cv2.imread(img_path) # 转为灰度图片 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 使用detector进行人脸检测 dets为返回的结果 dets = detector(gray_img, 1) #使用enumerate 函数遍历序列中的元素以及它们的下标 #下标i即为人脸序号 #left:人脸左边距离图片左边界的距离 ;right:人脸右边距离图片左边界的距离 #top:人脸上边距离图片上边界的距离 ;bottom:人脸下边距离图片上边界的距离 for i, d in enumerate(dets): x1 = d.top() if d.top() > 0 else 0 y1 = d.bottom() if d.bottom() > 0 else 0 x2 = d.left() if d.left() > 0 else 0 y2 = d.right() if d.right() > 0 else 0 # img[y:y+h,x:x+w] face = img[x1:y1,x2:y2] # 调整图片的尺寸 face = cv2.resize(face, (size,size)) cv2.imshow('image',face) # 保存图片 cv2.imwrite(output_dir+'/'+str(index)+'.jpg', face) index += 1 key = cv2.waitKey(30) & 0xff if key == 27: sys.exit(0)
这一步就是训练模型,,,刚开始会卡顿一会,,,以后就会跑起来,,,看一下是否是gpu跑,,cpu的话贼慢,,,gpu的话不到一分钟左右就能够了,,,
import tensorflow as tf import cv2 import numpy as np import os import random import sys from sklearn.model_selection import train_test_split my_faces_path = './my_faces' other_faces_path = './other_faces' size = 64 imgs = [] labs = [] def getPaddingSize(img): h, w, _ = img.shape top, bottom, left, right = (0,0,0,0) longest = max(h, w) if w < longest: tmp = longest - w # //表示整除符号 left = tmp // 2 right = tmp - left elif h < longest: tmp = longest - h top = tmp // 2 bottom = tmp - top else: pass return top, bottom, left, right def readData(path , h=size, w=size): for filename in os.listdir(path): if filename.endswith('.jpg'): filename = path + '/' + filename img = cv2.imread(filename) top,bottom,left,right = getPaddingSize(img) # 将图片放大, 扩充图片边缘部分 img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0,0,0]) img = cv2.resize(img, (h, w)) imgs.append(img) labs.append(path) readData(my_faces_path) readData(other_faces_path) # 将图片数据与标签转换成数组 imgs = np.array(imgs) labs = np.array([[0,1] if lab == my_faces_path else [1,0] for lab in labs]) # 随机划分测试集与训练集 train_x,test_x,train_y,test_y = train_test_split(imgs, labs, test_size=0.05, random_state=random.randint(0,100)) # 参数:图片数据的总数,图片的高、宽、通道 train_x = train_x.reshape(train_x.shape[0], size, size, 3) test_x = test_x.reshape(test_x.shape[0], size, size, 3) # 将数据转换成小于1的数 train_x = train_x.astype('float32')/255.0 test_x = test_x.astype('float32')/255.0 print('train size:%s, test size:%s' % (len(train_x), len(test_x))) # 图片块,每次取100张图片 batch_size = 100 num_batch = len(train_x) // batch_size x = tf.placeholder(tf.float32, [None, size, size, 3]) y_ = tf.placeholder(tf.float32, [None, 2]) keep_prob_5 = tf.placeholder(tf.float32) keep_prob_75 = tf.placeholder(tf.float32) def weightVariable(shape): init = tf.random_normal(shape, stddev=0.01) return tf.Variable(init) def biasVariable(shape): init = tf.random_normal(shape) return tf.Variable(init) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME') def maxPool(x): return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') def dropout(x, keep): return tf.nn.dropout(x, keep) def cnnLayer(): # 第一层 W1 = weightVariable([3,3,3,32]) # 卷积核大小(3,3), 输入通道(3), 输出通道(32) b1 = biasVariable([32]) # 卷积 conv1 = tf.nn.relu(conv2d(x, W1) + b1) # 池化 pool1 = maxPool(conv1) # 减小过拟合,随机让某些权重不更新 drop1 = dropout(pool1, keep_prob_5) # 第二层 W2 = weightVariable([3,3,32,64]) b2 = biasVariable([64]) conv2 = tf.nn.relu(conv2d(drop1, W2) + b2) pool2 = maxPool(conv2) drop2 = dropout(pool2, keep_prob_5) # 第三层 W3 = weightVariable([3,3,64,64]) b3 = biasVariable([64]) conv3 = tf.nn.relu(conv2d(drop2, W3) + b3) pool3 = maxPool(conv3) drop3 = dropout(pool3, keep_prob_5) # 全链接层 Wf = weightVariable([8*8*64, 512]) bf = biasVariable([512]) drop3_flat = tf.reshape(drop3, [-1, 8*8*64]) dense = tf.nn.relu(tf.matmul(drop3_flat, Wf) + bf) dropf = dropout(dense, keep_prob_75) # 输出层 Wout = weightVariable([512,2]) bout = biasVariable([2]) #out = tf.matmul(dropf, Wout) + bout out = tf.add(tf.matmul(dropf, Wout), bout) return out def cnnTrain(): out = cnnLayer() cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out, labels=y_)) train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy) # 比较标签是否相等,再求的全部数的平均值,tf.cast(强制转换类型) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(y_, 1)), tf.float32)) # 将loss与accuracy保存以供tensorboard使用 tf.summary.scalar('loss', cross_entropy) tf.summary.scalar('accuracy', accuracy) merged_summary_op = tf.summary.merge_all() # 数据保存器的初始化 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter('./tmp', graph=tf.get_default_graph()) for n in range(10): # 每次取128(batch_size)张图片 for i in range(num_batch): batch_x = train_x[i*batch_size : (i+1)*batch_size] batch_y = train_y[i*batch_size : (i+1)*batch_size] # 开始训练数据,同时训练三个变量,返回三个数据 _,loss,summary = sess.run([train_step, cross_entropy, merged_summary_op], feed_dict={x:batch_x,y_:batch_y, keep_prob_5:0.5,keep_prob_75:0.75}) summary_writer.add_summary(summary, n*num_batch+i) # 打印损失 print(n*num_batch+i, loss) if (n*num_batch+i) % 100 == 0: # 获取测试数据的准确率 acc = accuracy.eval({x:test_x, y_:test_y, keep_prob_5:1.0, keep_prob_75:1.0}) print(n*num_batch+i, acc) # 准确率大于0.98时保存并退出 if acc > 0.98 and n > 2: saver.save(sess, './train_faces.model', global_step=n*num_batch+i) sys.exit(0) print('accuracy less 0.98, exited!') cnnTrain()
最后就是识别了,,,运行这个会出现两个窗口,一个是实时的拍摄窗口,一个是识别的窗口(会出现蓝色的框,,,
而后若是识别出来是以前录入的那我的的话,,cmd里会出现True的字样,,不然是False,,,若是没有识别出来有人脸在画面里的话会卡住不动,,,
大概以前录的时间是2-3分钟左右的准确度就很高了,,
import tensorflow as tf import cv2 import dlib import numpy as np import os import random import sys import time from sklearn.model_selection import train_test_split my_faces_path = './my_faces' other_faces_path = './other_faces' size = 64 imgs = [] labs = [] def getPaddingSize(img): h, w, _ = img.shape top, bottom, left, right = (0,0,0,0) longest = max(h, w) if w < longest: tmp = longest - w # //表示整除符号 left = tmp // 2 right = tmp - left elif h < longest: tmp = longest - h top = tmp // 2 bottom = tmp - top else: pass return top, bottom, left, right def readData(path , h=size, w=size): for filename in os.listdir(path): if filename.endswith('.jpg'): filename = path + '/' + filename img = cv2.imread(filename) top,bottom,left,right = getPaddingSize(img) # 将图片放大, 扩充图片边缘部分 img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0,0,0]) img = cv2.resize(img, (h, w)) imgs.append(img) labs.append(path) readData(my_faces_path) readData(other_faces_path) # 将图片数据与标签转换成数组 imgs = np.array(imgs) labs = np.array([[0,1] if lab == my_faces_path else [1,0] for lab in labs]) # 随机划分测试集与训练集 train_x,test_x,train_y,test_y = train_test_split(imgs, labs, test_size=0.05, random_state=random.randint(0,100)) # 参数:图片数据的总数,图片的高、宽、通道 train_x = train_x.reshape(train_x.shape[0], size, size, 3) test_x = test_x.reshape(test_x.shape[0], size, size, 3) # 将数据转换成小于1的数 train_x = train_x.astype('float32')/255.0 test_x = test_x.astype('float32')/255.0 print('train size:%s, test size:%s' % (len(train_x), len(test_x))) # 图片块,每次取128张图片 batch_size = 128 num_batch = len(train_x) // 128 x = tf.placeholder(tf.float32, [None, size, size, 3]) y_ = tf.placeholder(tf.float32, [None, 2]) keep_prob_5 = tf.placeholder(tf.float32) keep_prob_75 = tf.placeholder(tf.float32) def weightVariable(shape): init = tf.random_normal(shape, stddev=0.01) return tf.Variable(init) def biasVariable(shape): init = tf.random_normal(shape) return tf.Variable(init) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME') def maxPool(x): return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') def dropout(x, keep): return tf.nn.dropout(x, keep) def cnnLayer(): # 第一层 W1 = weightVariable([3,3,3,32]) # 卷积核大小(3,3), 输入通道(3), 输出通道(32) b1 = biasVariable([32]) # 卷积 conv1 = tf.nn.relu(conv2d(x, W1) + b1) # 池化 pool1 = maxPool(conv1) # 减小过拟合,随机让某些权重不更新 drop1 = dropout(pool1, keep_prob_5) # 第二层 W2 = weightVariable([3,3,32,64]) b2 = biasVariable([64]) conv2 = tf.nn.relu(conv2d(drop1, W2) + b2) pool2 = maxPool(conv2) drop2 = dropout(pool2, keep_prob_5) # 第三层 W3 = weightVariable([3,3,64,64]) b3 = biasVariable([64]) conv3 = tf.nn.relu(conv2d(drop2, W3) + b3) pool3 = maxPool(conv3) drop3 = dropout(pool3, keep_prob_5) # 全链接层 Wf = weightVariable([8*16*32, 512]) bf = biasVariable([512]) drop3_flat = tf.reshape(drop3, [-1, 8*16*32]) dense = tf.nn.relu(tf.matmul(drop3_flat, Wf) + bf) dropf = dropout(dense, keep_prob_75) # 输出层 Wout = weightVariable([512,2]) bout = biasVariable([2]) out = tf.add(tf.matmul(dropf, Wout), bout) return out output = cnnLayer() predict = tf.argmax(output, 1) saver = tf.train.Saver() sess = tf.Session() saver.restore(sess, tf.train.latest_checkpoint('.')) def is_my_face(image): res = sess.run(predict, feed_dict={x: [image/255.0], keep_prob_5:1.0, keep_prob_75: 1.0}) if res[0] == 1: return True else: return False #使用dlib自带的frontal_face_detector做为咱们的特征提取器 detector = dlib.get_frontal_face_detector() cam = cv2.VideoCapture(0) while True: time.sleep(0.2) _, img = cam.read() gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) dets = detector(gray_image, 1) if not len(dets): #print('Can`t get face.') cv2.imshow('img', img) key = cv2.waitKey(30) & 0xff if key == 27: sys.exit(0) for i, d in enumerate(dets): x1 = d.top() if d.top() > 0 else 0 y1 = d.bottom() if d.bottom() > 0 else 0 x2 = d.left() if d.left() > 0 else 0 y2 = d.right() if d.right() > 0 else 0 face = img[x1:y1,x2:y2] # 调整图片的尺寸 face = cv2.resize(face, (size,size)) print('Is this my face? %s' % is_my_face(face)) cv2.rectangle(img, (x2,x1),(y2,y1), (255,0,0),3) cv2.imshow('image',img) key = cv2.waitKey(30) & 0xff if key == 27: sys.exit(0) sess.close()
后面就没了,,建议弄过一个遍以后,代码仍是本身再重写一别吧,,这样能理解里面的细节的内容,,,
装了四、5遍多的环境感受每一次都有收获,,虽然每次都会遇到一些问题,,可是都也能靠本身来解决,,,hhh,,,
(end)