若是你问我,哪种算法最重要?html
我可能会回答"公钥加密算法"。算法
由于它是计算机通讯安全的基石,保证了加密数据不会被破解。你能够想象一下,信用卡交易被破解的后果。安全
进入正题以前,我先简单介绍一下,什么是"公钥加密算法"。网络
1、一点历史函数
1976年之前,全部的加密方法都是同一种模式:工具
(1)甲方选择某一种加密规则,对信息进行加密;加密
(2)乙方使用同一种规则,对信息进行解密。计算机网络
因为加密和解密使用一样规则(简称"密钥"),这被称为"对称加密算法"(Symmetric-key algorithm)。设计
这种加密模式有一个最大弱点:甲方必须把加密规则告诉乙方,不然没法解密。保存和传递密钥,就成了最头疼的问题。code
1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,能够在不直接传递密钥的状况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。这个算法启发了其余科学家。人们认识到,加密和解密可使用不一样的规则,只要这两种规则之间存在某种对应关系便可,这样就避免了直接传递密钥。
这种新的加密模式被称为"非对称加密算法"。
(1)乙方生成两把密钥(公钥和私钥)。公钥是公开的,任何人均可以得到,私钥则是保密的。
(2)甲方获取乙方的公钥,而后用它对信息加密。
(3)乙方获得加密后的信息,用私钥解密。
若是公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通讯就是安全的。
1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,能够实现非对称加密。这种算法用他们三我的的名字命名,叫作RSA算法。从那时直到如今,RSA算法一直是最广为使用的"非对称加密算法"。绝不夸张地说,只要有计算机网络的地方,就有RSA算法。
这种算法很是可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还没法破解(至少没人公开宣布)。所以能够认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。
下面,我就进入正题,解释RSA算法的原理。文章共分红两部分,今天是第一部分,介绍要用到的四个数学概念。你能够看到,RSA算法并不难,只须要一点数论知识就能够理解。
2、互质关系
若是两个正整数,除了1之外,没有其余公因子,咱们就称这两个数是互质关系(coprime)。好比,15和32没有公因子,因此它们是互质关系。这说明,不是质数也能够构成互质关系。
关于互质关系,不可贵到如下结论:
1. 任意两个质数构成互质关系,好比13和61。
2. 一个数是质数,另外一个数只要不是前者的倍数,二者就构成互质关系,好比3和10。
3. 若是两个数之中,较大的那个数是质数,则二者构成互质关系,好比97和57。
4. 1和任意一个天然数是都是互质关系,好比1和99。
5. p是大于1的整数,则p和p-1构成互质关系,好比57和56。
6. p是大于1的奇数,则p和p-2构成互质关系,好比17和15。
3、欧拉函数
请思考如下问题:
任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(好比,在1到8之中,有多少个数与8构成互质关系?)
计算这个值的方法就叫作欧拉函数,以φ(n)表示。在1到8之中,与8造成互质关系的是一、三、五、7,因此 φ(n) = 4。
φ(n) 的计算方法并不复杂,可是为了获得最后那个公式,须要一步步讨论。
第一种状况
若是n=1,则 φ(1) = 1 。由于1与任何数(包括自身)都构成互质关系。
第二种状况
若是n是质数,则 φ(n)=n-1 。由于质数与小于它的每个数,都构成互质关系。好比5与一、二、三、4都构成互质关系。
第三种状况
若是n是质数的某一个次方,即 n = p^k (p为质数,k为大于等于1的整数),则
好比 φ(8) = φ(2^3) =2^3 - 2^2 = 8 -4 = 4。
这是由于只有当一个数不包含质数p,才可能与n互质。而包含质数p的数一共有p^(k-1)个,即1×p、2×p、3×p、...、p^(k-1)×p,把它们去除,剩下的就是与n互质的数。
上面的式子还能够写成下面的形式:
能够看出,上面的第二种状况是 k=1 时的特例。
第四种状况
若是n能够分解成两个互质的整数之积,
n = p1 × p2
则
φ(n) = φ(p1p2) = φ(p1)φ(p2)
即积的欧拉函数等于各个因子的欧拉函数之积。好比,φ(56)=φ(8×7)=φ(8)×φ(7)=4×6=24。
这一条的证实要用到"中国剩余定理",这里就不展开了,只简单说一下思路:若是a与p1互质(a<p1),b与p2互质(b<p2),c与p1p2互质(c<p1p2),则c与数对 (a,b) 是一一对应关系。因为a的值有φ(p1)种可能,b的值有φ(p2)种可能,则数对 (a,b) 有φ(p1)φ(p2)种可能,而c的值有φ(p1p2)种可能,因此φ(p1p2)就等于φ(p1)φ(p2)。
第五种状况
由于任意一个大于1的正整数,均可以写成一系列质数的积。
根据第4条的结论,获得
再根据第3条的结论,获得
也就等于
这就是欧拉函数的通用计算公式。好比,1323的欧拉函数,计算过程以下:
4、欧拉定理
欧拉函数的用处,在于欧拉定理。"欧拉定理"指的是:
若是两个正整数a和n互质,则n的欧拉函数 φ(n) 可让下面的等式成立:
也就是说,a的φ(n)次方被n除的余数为1。或者说,a的φ(n)次方减去1,能够被n整除。好比,3和7互质,而7的欧拉函数φ(7)等于6,因此3的6次方(729)减去1,能够被7整除(728/7=104)。
欧拉定理的证实比较复杂,这里就省略了。咱们只要记住它的结论就好了。
欧拉定理能够大大简化某些运算。好比,7和10互质,根据欧拉定理,
已知 φ(10) 等于4,因此立刻获得7的4倍数次方的个位数确定是1。
所以,7的任意次方的个位数(例如7的222次方),心算就能够算出来。
欧拉定理有一个特殊状况。
假设正整数a与质数p互质,由于质数p的φ(p)等于p-1,则欧拉定理能够写成
这就是著名的费马小定理。它是欧拉定理的特例。
欧拉定理是RSA算法的核心。理解了这个定理,就能够理解RSA。
5、模反元素
还剩下最后一个概念:
若是两个正整数a和n互质,那么必定能够找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。
这时,b就叫作a的"模反元素"。
好比,3和11互质,那么3的模反元素就是4,由于 (3 × 4)-1 能够被11整除。显然,模反元素不止一个, 4加减11的整数倍都是3的模反元素 {...,-18,-7,4,15,26,...},即若是b是a的模反元素,则 b+kn 都是a的模反元素。
欧拉定理能够用来证实模反元素必然存在。
能够看到,a的 φ(n)-1 次方,就是a的模反元素。
==========================================
好了,须要用到的数学工具,所有介绍完了。RSA算法涉及的数学知识,就是上面这些,下一次我就来介绍公钥和私钥究竟是怎么生成的。
上一次,我介绍了一些数论知识。
有了这些知识,咱们就能够看懂RSA算法。这是目前地球上最重要的加密算法。
6、密钥生成的步骤
咱们经过一个例子,来理解RSA算法。假设爱丽丝要与鲍勃进行加密通讯,她该怎么生成公钥和私钥呢?
第一步,随机选择两个不相等的质数p和q。
爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。)
第二步,计算p和q的乘积n。
爱丽丝就把61和53相乘。
n = 61×53 = 3233
n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,因此这个密钥就是12位。实际应用中,RSA密钥通常是1024位,重要场合则为2048位。
第三步,计算n的欧拉函数φ(n)。
根据公式:
φ(n) = (p-1)(q-1)
爱丽丝算出φ(3233)等于60×52,即3120。
第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。
爱丽丝就在1到3120之间,随机选择了17。(实际应用中,经常选择65537。)
第五步,计算e对于φ(n)的模反元素d。
所谓"模反元素"就是指有一个整数d,可使得ed被φ(n)除的余数为1。
ed ≡ 1 (mod φ(n))
这个式子等价于
ed - 1 = kφ(n)
因而,找到模反元素d,实质上就是对下面这个二元一次方程求解。
ex + φ(n)y = 1
已知 e=17, φ(n)=3120,
17x + 3120y = 1
这个方程能够用"扩展欧几里得算法"求解,此处省略具体过程。总之,爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。
至此全部计算完成。
第六步,将n和e封装成公钥,n和d封装成私钥。
在爱丽丝的例子中,n=3233,e=17,d=2753,因此公钥就是 (3233,17),私钥就是(3233, 2753)。
实际应用中,公钥和私钥的数据都采用ASN.1格式表达(实例)。
7、RSA算法的可靠性
回顾上面的密钥生成步骤,一共出现六个数字:
p
q
n
φ(n)
e
d
这六个数字之中,公钥用到了两个(n和e),其他四个数字都是不公开的。其中最关键的是d,由于n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。
那么,有无可能在已知n和e的状况下,推导出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论:若是n能够被因数分解,d就能够算出,也就意味着私钥被破解。
但是,大整数的因数分解,是一件很是困难的事情。目前,除了暴力破解,尚未发现别的有效方法。维基百科这样写道:
"对极大整数作因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数作因数分解愈困难,RSA算法愈可靠。
假若有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度降低。但找到这样的算法的可能性是很是小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上尚未任何可靠的攻击RSA算法的方式。
只要密钥长度足够长,用RSA加密的信息其实是不能被解破的。"
举例来讲,你能够对3233进行因数分解(61×53),可是你无法对下面这个整数进行因数分解。
12301866845301177551304949
58384962720772853569595334
79219732245215172640050726
36575187452021997864693899
56474942774063845925192557
32630345373154826850791702
61221429134616704292143116
02221240479274737794080665
351419597459856902143413
它等于这样两个质数的乘积:
33478071698956898786044169
84821269081770479498371376
85689124313889828837938780
02287614711652531743087737
814467999489
×
36746043666799590428244633
79962795263227915816434308
76426760322838157396665112
79233373417143396810270092
798736308917
事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,尚未被报道过,所以目前被破解的最长RSA密钥就是768位。
8、加密和解密
有了公钥和密钥,就能进行加密和解密了。
(1)加密要用公钥 (n,e)
假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里须要注意,m必须是整数(字符串能够取ascii值或unicode值),且m必须小于n。
所谓"加密",就是算出下式的c:
me ≡ c (mod n)
爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么能够算出下面的等式:
6517 ≡ 2790 (mod 3233)
因而,c等于2790,鲍勃就把2790发给了爱丽丝。
(2)解密要用私钥(n,d)
爱丽丝拿到鲍勃发来的2790之后,就用本身的私钥(3233, 2753) 进行解密。能够证实,下面的等式必定成立:
cd ≡ m (mod n)
也就是说,c的d次方除以n的余数为m。如今,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出
27902753 ≡ 65 (mod 3233)
所以,爱丽丝知道了鲍勃加密前的原文就是65。
至此,"加密--解密"的整个过程所有完成。
咱们能够看到,若是不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难作到的,因此RSA算法保证了通讯安全。
你可能会问,公钥(n,e) 只能加密小于n的整数m,那么若是要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另外一种是先选择一种"对称性加密算法"(好比DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。
9、私钥解密的证实
最后,咱们来证实,为何用私钥解密,必定能够正确地获得m。也就是证实下面这个式子:
cd ≡ m (mod n)
由于,根据加密规则
me ≡ c (mod n)
因而,c能够写成下面的形式:
c = me - kn
将c代入要咱们要证实的那个解密规则:
(me - kn)d ≡ m (mod n)
它等同于求证
med ≡ m (mod n)
因为
ed ≡ 1 (mod φ(n))
因此
ed = hφ(n)+1
将ed代入:
mhφ(n)+1 ≡ m (mod n)
接下来,分红两种状况证实上面这个式子。
(1)m与n互质。
根据欧拉定理,此时
mφ(n) ≡ 1 (mod n)
获得
(mφ(n))h × m ≡ m (mod n)
原式获得证实。
(2)m与n不是互质关系。
此时,因为n等于质数p和q的乘积,因此m必然等于kp或kq。
以 m = kp为例,考虑到这时k与q必然互质,则根据欧拉定理,下面的式子成立:
(kp)q-1 ≡ 1 (mod q)
进一步获得
[(kp)q-1]h(p-1) × kp ≡ kp (mod q)
即
(kp)ed ≡ kp (mod q)
将它改写成下面的等式
(kp)ed = tq + kp
这时t必然能被p整除,即 t=t'p
(kp)ed = t'pq + kp
由于 m=kp,n=pq,因此
med ≡ m (mod n)
原式获得证实。
首先,每一个用户都有两把钥匙,一把公钥一把私钥。公钥是对外发布的,全部人都看的到全部人的公钥,私钥是本身保存,每一个人都只知道本身的私钥而不知作别人的。
用该用户的公钥加密后只能该用户的私钥才能解密。这种状况下,公钥是用来加密信息的,确保只有特定的人(用谁的公钥就是谁)才能解密该信息。
下面我拿A银行和小明来举例子吧。
假设这2者之间是用不对称的加密算法来保证信息传输的安全性(不被第三人知道信息的含义及篡改信息)。大体流程以下:
首先小明发了一条信息给A银行“我要存500元”。这条信息小明会根据A银行的对外发布的公钥把这条信息加密了,加密以后,变成“XXXXXXX”发给A银行。中间被第三者截获,因为没有A银行的私钥没法解密,不能知道信息的含义,也没法按正确的方式篡改。因此拿这条加密信息是没办法的。最后被A银行接受,A银行用本身的私钥去解密这条信息,解密成功,读取内容,执行操做。而后得知消息是小明发来的,便去拿小明的公钥,把“操做成功(或失败)”这条信息用小明的公钥加密,发给小明。同理最后小明用本身的私钥解开,得知知乎发来的信息内容。其余人截获由于没有小明的私钥因此也没有用。
还有第二种状况,公钥是用来解密信息的,确保让别人知道这条信息是真的由我发布的,是完整正确的。接收者由此可知这条信息确实来自于拥有私钥的某人,这被称做数字签名,公钥的形式就是数字证书。怎么理解呢?
继续拿小明和银行A举例子。银行A发布了一个银行客户端的补丁供全部用户更新,那为了确保人家下载的是正确完整的客户端,银行A会为这个程序打上一个数字签名(就是用银行A的私钥对这个程序加密而后发布),你须要在你的电脑里装上银行A的数字证书(就是银行对外发布的公钥),而后下载好这个程序,数字证书会去解密这个程序的数字签名,解密成功,补丁得以使用。同时你能知道这个补丁确实是来自这个银行A,是由他发布的,而不是其余人发布的。
若是想了解算法的数学原理,能够看这篇博客: