熬夜整理的c/c++万字总结(一),值得收藏!

一. C语言概述

欢迎你们来到c语言的世界,c语言是一种强大的专业化的编程语言。c++

这必定是你须要的电子书资源,全!点击查看!程序员

程序员书籍资源,点击查看!编程

1.1 C语言的起源

贝尔实验室的Dennis Ritchie在1972年开发了C,当时他正与ken Thompson一块儿设计UNIX操做系统,然而,C并非彻底由Ritchie构想出来的。它来自Thompson的B语言。数组

1.2 使用C语言的理由

在过去的几十年中,c语言已成为最流行和最重要的编程语言之一。它之因此获得发展,是由于人们尝试使用它后都喜欢它。过去不少年中,许多人从c语言转而使用更强大的c++语言,但c有其自身的优点,仍然是一种重要的语言,并且它仍是学习c++的必经之路。编程语言

  • 高效性。c语言是一种高效的语言。c表现出一般只有汇编语言才具备的精细的控制能力(汇编语言是特定cpu设计所采用的一组内部制定的助记符。不一样的cpu类型使用不一样的汇编语言)。若是愿意,您能够细调程序以得到最大的速度或最大的内存使用率。函数

  • 可移植性。c语言是一种可移植的语言。意味着,在一个系统上编写的c程序通过不多改动或不通过修改就能够在其余的系统上运行。性能

  • 强大的功能和灵活性。c强大而又灵活。好比强大灵活的UNIX操做系统即是用c编写的。其余的语言(Perl、Python、BASIC、Pascal)的许多编译器和解释器也都是用c编写的。结果是当你在一台Unix机器上使用Python时,最终由一个c程序负责生成最后的可执行程序。学习

1.3 C语言标准

1.3.1 K&R Curl

起初,C语言没有官方标准。1978年由美国电话电报公司(AT&T)贝尔实验室正式发表了C语言。布莱恩•柯林汉(Brian Kernighan) 和 丹尼斯•里奇(Dennis Ritchie) 出版了一本书,名叫《The C Programming Language》。这本书被 C语言开发者们称为K&R,不少年来被看成 C语言的非正式的标准说明。人们称这个版本的 C语言为K&R C。spa

K&R C主要介绍了如下特点:结构体(struct)类型;长整数(long int)类型;无符号整数(unsigned int)类型;把运算符=+和=-改成+=和-=。由于=+和=-会使得编译器不知道使用者要处理i = -10仍是i =- 10,使得处理上产生混淆。

即便在后来ANSI C标准被提出的许多年后,K&R C仍然是许多编译器的最准要求,许多老旧的编译器仍然运行K&R C的标准。

1.3.2 ANSI C/C89标准

1970到80年代,C语言被普遍应用,从大型主机到小型微机,也衍生了C语言的不少不一样版本。1983年,美国国家标准协会(ANSI)成立了一个委员会X3J11,来制定 C语言标准。

1989年,美国国家标准协会(ANSI)经过了C语言标准,被称为ANSI X3.159-1989 "Programming Language C"。由于这个标准是1989年经过的,因此通常简称C89标准。有些人也简称ANSI C,由于这个标准是美国国家标准协会(ANSI)发布的。

1990年,国际标准化组织(ISO)和国际电工委员会(IEC)把C89标准定为C语言的国际标准,命名为ISO/IEC 9899:1990 - Programming languages -- C[5] 。由于此标准是在1990年发布的,因此有些人把简称做C90标准。不过大多数人依然称之为C89标准,由于此标准与ANSI C89标准彻底等同。

1994年,国际标准化组织(ISO)和国际电工委员会(IEC)发布了C89标准修订版,名叫ISO/IEC 9899:1990/Cor 1:1994[6] ,有些人简称为C94标准。

1995年,国际标准化组织(ISO)和国际电工委员会(IEC)再次发布了C89标准修订版,名叫ISO/IEC 9899:1990/Amd 1:1995 - C Integrity[7] ,有些人简称为C95标准。

1.3.3 C99标准

1999年1月,国际标准化组织(ISO)和国际电工委员会(IEC)发布了C语言的新标准,名叫ISO/IEC 9899:1999 - Programming languages -- C ,简称C99标准。这是C语言的第二个官方标准。

例如:

  • 增长了新关键字 restrict,inline,_Complex,_Imaginary,_Bool

  • 支持 long long,long double _Complex,float _Complex 这样的类型

  • 支持了不定长的数组。数组的长度就能够用变量了。声明类型的时候呢,就用 int a[*] 这样的写法。不过考虑到效率和实现,这玩意并非一个新类型。

2、内存分区

2.1 数据类型

2.1.1 数据类型概念

什么是数据类型?为何须要数据类型? 数据类型是为了更好进行内存的管理,让编译器能肯定分配多少内存。

咱们现实生活中,狗是狗,鸟是鸟等等,每一种事物都有本身的类型,那么程序中使用数据类型也是来源于生活。

当咱们给狗分配内存的时候,也就至关于给狗建造狗窝,给鸟分配内存的时候,也就是给鸟建造一个鸟窝,咱们能够给他们各自建造一个别墅,可是会形成内存的浪费,不能很好的利用内存空间。

咱们在想,若是给鸟分配内存,只须要鸟窝大小的空间就够了,若是给狗分配内存,那么也只须要狗窝大小的内存,而不是给鸟和狗都分配一座别墅,形成内存的浪费。

当咱们定义一个变量,a = 10,编译器如何分配内存?计算机只是一个机器,它怎么知道用多少内存能够放得下10?

因此说,数据类型很是重要,它能够告诉编译器分配多少内存能够放得下咱们的数据。

狗窝里面是狗,鸟窝里面是鸟,若是没有数据类型,你怎么知道冰箱里放得是一头大象!

数据类型基本概念:

  • 类型是对数据的抽象;

  • 类型相同的数据具备相同的表示形式、存储格式以及相关操做;

  • 程序中全部的数据都一定属于某种数据类型;

  • 数据类型能够理解为建立变量的模具: 固定大小内存的别名;

2.1.2 数据类型别名

typedef unsigned int u32;
typedef struct _PERSON{
 char name[64];
 int age;
}Person;

void test(){
 u32 val; //至关于 unsigned int val;
 Person person; //至关于 struct PERSON person;
}

2.1.3 void数据类型

void字面意思是”无类型”,void* 无类型指针,无类型指针能够指向任何类型的数据。

void定义变量是没有任何意义的,当你定义void a,编译器会报错。

void真正用在如下两个方面:

  • 对函数返回的限定;

  • 对函数参数的限定;

//1. void修饰函数参数和函数返回
void test01(void){
 printf("hello world");
}

//2. 不能定义void类型变量
void test02(){
 void val; //报错
}

//3. void* 能够指向任何类型的数据,被称为万能指针
void test03(){
 int a = 10;
 void* p = NULL;
 p = &a;
 printf("a:%d\n",*(int*)p);
 
 char c = 'a';
 p = &c;
 printf("c:%c\n",*(char*)p);
}

//4. void* 经常使用于数据类型的封装
void test04(){
 //void * memcpy(void * _Dst, const void * _Src, size_t _Size);
}

2.1.4 sizeof 操做符

sizeof 是 c语言中的一个操做符,相似于++、--等等。sizeof 可以告诉咱们编译器为某一特定数据或者某一个类型的数据在内存中分配空间时分配的大小,大小以字节为单位。

基本语法:

sizeof(变量);
sizeof 变量;
sizeof(类型);

sizeof 注意点

  • sizeof返回的占用空间大小是为这个变量开辟的大小,而不仅是它用到的空间。和现今住房的建筑面积和实用面积的概念差很少。因此对结构体用的时候,大多状况下就得考虑字节对齐的问题了;

  • sizeof返回的数据结果类型是unsigned int;

  • 要注意数组名和指针变量的区别。一般状况下,咱们总以为数组名和指针变量差很少,可是在用sizeof的时候差异很大,对数组名用sizeof返回的是整个数组的大小,而对指针变量进行操做的时候返回的则是指针变量自己所占得空间,在32位机的条件下通常都是4。并且当数组名做为函数参数时,在函数内部,形参也就是个指针,因此再也不返回数组的大小;

//1. sizeof基本用法
void test01(){
 int a = 10;
 printf("len:%d\n", sizeof(a));
 printf("len:%d\n", sizeof(int));
 printf("len:%d\n", sizeof a);
}

//2. sizeof 结果类型
void test02(){
 unsigned int a = 10;
 if (a - 11 < 0){
  printf("结果小于0\n");
 }
 else{
  printf("结果大于0\n");
 }
 int b = 5;
 if (sizeof(b) - 10 < 0){
  printf("结果小于0\n");
 }
 else{
  printf("结果大于0\n");
 }
}

//3. sizeof 碰到数组
void TestArray(int arr[]){
 printf("TestArray arr size:%d\n",sizeof(arr));
}
void test03(){
 int arr[] = { 10, 20, 30, 40, 50 };
 printf("array size: %d\n",sizeof(arr));

 //数组名在某些状况下等价于指针
 int* pArr = arr;
 printf("arr[2]:%d\n",pArr[2]);
 printf("array size: %d\n", sizeof(pArr));

 //数组作函数函数参数,将退化为指针,在函数内部再也不返回数组大小
 TestArray(arr);
}

2.1.5 数据类型总结

  • 数据类型本质是固定内存大小的别名,是个模具,C语言规定:经过数据类型定义变量;

  • 数据类型大小计算(sizeof);

  • 能够给已存在的数据类型起别名typedef;

  • 数据类型的封装(void 万能类型);

2.2 变量

2.1.1 变量的概念

既能读又能写的内存对象,称为变量;

若一旦初始化后不能修改的对象则称为常量。

变量定义形式: 类型  标识符, 标识符, … , 标识符

2.1.2 变量名的本质

  • 变量名的本质:一段连续内存空间的别名;

  • 程序经过变量来申请和命名内存空间 int a = 0;

  • 经过变量名访问内存空间;

  • 不是向变量名读写数据,而是向变量所表明的内存空间中读写数据;

修改变量的两种方式:

  void test(){
 
 int a = 10;

 //1. 直接修改
 a = 20;
 printf("直接修改,a:%d\n",a);

 //2. 间接修改
 int* p = &a;
 *p = 30;

 printf("间接修改,a:%d\n", a);
}

2.3 程序的内存分区模型

2.3.1 内存分区

2.3.1.1 运行以前

咱们要想执行咱们编写的c程序,那么第一步须要对这个程序进行编译。 1)预处理:宏定义展开、头文件展开、条件编译,这里并不会检查语法

2)编译:检查语法,将预处理后文件编译生成汇编文件

3)汇编:将汇编文件生成目标文件(二进制文件)

4)连接:将目标文件连接为可执行程序

 代码区

存放 CPU 执行的机器指令。一般代码区是可共享的(即另外的执行程序能够调用它),使其可共享的目的是对于频繁被执行的程序,只须要在内存中有一份代码便可。代码区一般是只读的,使其只读的缘由是防止程序意外地修改了它的指t令。另外,代码区还规划了局部变量的相关信息。

 全局初始化数据区/静态数据区(data段)

该区包含了在程序中明确被初始化的全局变量、已经初始化的静态变量(包括全局静态变量和t)和常量数据(如字符串常量)。

 未初始化数据区(又叫 bss 区)

存入的是全局未初始化变量和未初始化静态变量。未初始化数据区的数据在程序开始执行以前被内核初始化为 0 或者空(NULL)。

整体来说说,程序源代码被编译以后主要分红两种段:程序指令(代码区)和程序数据(数据区)。代码段属于程序指令,而数据域段和.bss段属于程序数据。

那为何把程序的指令和程序数据分开呢?

  • 程序被load到内存中以后,能够将数据和代码分别映射到两个内存区域。因为数据区域对进程来讲是可读可写的,而指令区域对程序来说说是只读的,因此分区以后呢,能够将程序指令区域和数据区域分别设置成可读可写或只读。这样能够防止程序的指令有意或者无心被修改;

  • 当系统中运行着多个一样的程序的时候,这些程序执行的指令都是同样的,因此只须要内存中保存一份程序的指令就能够了,只是每个程序运行中数据不同而已,这样能够节省大量的内存。好比说以前的Windows Internet Explorer 7.0运行起来以后, 它须要占用112 844KB的内存,它的私有部分数据有大概15 944KB,也就是说有96 900KB空间是共享的,若是程序中运行了几百个这样的进程,能够想象共享的方法能够节省大量的内存。

2.3.1.1 运行以后

程序在加载到内存前,代码区和全局区(data和bss)的大小就是固定的,程序运行期间不能改变。而后,运行可执行程序,操做系统把物理硬盘程序load(加载)到内存,除了根据可执行程序的信息分出代码区(text)、数据区(data)和未初始化数据区(bss)以外,还额外增长了栈区、堆区。

 代码区(text segment)

加载的是可执行文件代码段,全部的可执行代码都加载到代码区,这块内存是不能够在运行期间修改的。

 未初始化数据区(BSS)

加载的是可执行文件BSS段,位置能够分开亦能够紧靠数据段,存储于数据段的数据(全局未初始化,静态未初始化数据)的生存周期为整个程序运行过程。

 全局初始化数据区/静态数据区(data segment)

加载的是可执行文件数据段,存储于数据段(全局初始化,静态初始化数据,文字常量(只读))的数据的生存周期为整个程序运行过程。

 栈区(stack)

栈是一种先进后出的内存结构,由编译器自动分配释放,存放函数的参数值、返回值、局部变量等。在程序运行过程当中实时加载和释放,所以,局部变量的生存周期为申请到释放该段栈空间。

 堆区(heap)

堆是一个大容器,它的容量要远远大于栈,但没有栈那样先进后出的顺序。用于动态内存分配。堆在内存中位于BSS区和栈区之间。通常由程序员分配和释放,若程序员不释放,程序结束时由操做系统回收。

2.3.2 分区模型

2.3.2.1 栈区

由系统进行内存的管理。主要存放函数的参数以及局部变量。在函数完成执行,系统自行释放栈区内存,不须要用户管理。

#char* func(){
 char p[] = "hello world!"; //在栈区存储 乱码
 printf("%s\n", p);
 return p;
}
void test(){
 char* p = NULL;
 p = func();  
 printf("%s\n",p); 
}

2.3.2.2 堆区

由编程人员手动申请,手动释放,若不手动释放,程序结束后由系统回收,生命周期是整个程序运行期间。使用malloc或者new进行堆的申请。

char* func(){
 char* str = malloc(100);
 strcpy(str, "hello world!");
 printf("%s\n",str);
 return str;
}

void test01(){
 char* p = NULL;
 p = func();
 printf("%s\n",p);
}

void allocateSpace(char* p){
 p = malloc(100);
 strcpy(p, "hello world!");
 printf("%s\n", p);
}

void test02(){
 
 char* p = NULL;
 allocateSpace(p);

 printf("%s\n", p);
}

堆分配内存API:

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

功能:

在内存动态存储区中分配nmemb块长度为size字节的连续区域。calloc自动将分配的内存 置0。

参数:

nmemb:所需内存单元数量 size:每一个内存单元的大小(单位:字节)

返回值:

成功:分配空间的起始地址

失败:NULL

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

功能:

从新分配用malloc或者calloc函数在堆中分配内存空间的大小。 realloc不会自动清理增长的内存,须要手动清理,若是指定的地址后面有连续的空间,那么就会在已有地址基础上增长内存,若是指定的地址后面没有空间,那么realloc会从新分配新的连续内存,把旧内存的值拷贝到新内存,同时释放旧内存。

参数:

ptr:为以前用malloc或者calloc分配的内存地址,若是此参数等于NULL,那么和realloc与malloc功能一致

size:为从新分配内存的大小, 单位:字节

返回值:

成功:新分配的堆内存地址

失败:NULL

void test01(){
 
 int* p1 = calloc(10,sizeof(int));
 if (p1 == NULL){
  return;
 }
 for (int i = 0; i < 10; i ++){
  p1[i] = i + 1;
 }
 for (int i = 0; i < 10; i++){
  printf("%d ",p1[i]);
 }
 printf("\n");
 free(p1);
}

void test02(){
 int* p1 = calloc(10, sizeof(int));
 if (p1 == NULL){
  return;
 }
 for (int i = 0; i < 10; i++){
  p1[i] = i + 1;
 }

 int* p2 = realloc(p1, 15 * sizeof(int));
 if (p2 == NULL){
  return;
 }

 printf("%d\n", p1);
 printf("%d\n", p2);

 //打印
 for (int i = 0; i < 15; i++){
  printf("%d ", p2[i]);
 }
 printf("\n");

 //从新赋值
 for (int i = 0; i < 15; i++){
  p2[i] = i + 1;
 }
 
 //再次打印
 for (int i = 0; i < 15; i++){
  printf("%d ", p2[i]);
 }
 printf("\n");

 free(p2);
}

2.3.2.3 全局/静态区

全局静态区内的变量在编译阶段已经分配好内存空间并初始化。这块内存在程序运行期间一直存在,它主要存储全局变量、静态变量和常量。

注意:

(1)这里不区分初始化和未初始化的数据区,是由于静态存储区内的变量若不显示初始化,则编译器会自动以默认的方式进行初始化,即静态存储区内不存在未初始化的变量。

(2)全局静态存储区内的常量分为常变量和字符串常量,一经初始化,不可修改。静态存储内的常变量是全局变量,与局部常变量不一样,区别在于局部常变量存放于栈,实际可间接经过指针或者引用进行修改,而全局常变量存放于静态常量区则不能够间接修改。

(3)字符串常量存储在全局/静态存储区的常量区。

int v1 = 10;//全局/静态区
const int v2 = 20; //常量,一旦初始化,不可修改
static int v3 = 20; //全局/静态区
char *p1; //全局/静态区,编译器默认初始化为NULL

//那么全局static int 和 全局int变量有什么区别?

void test(){
 static int v4 = 20; //全局/静态区
}
char* func(){
 static char arr[] = "hello world!"; //在静态区存储 可读可写
 arr[2] = 'c';
 char* p = "hello world!"; //全局/静态区-字符串常量区 
 //p[2] = 'c'; //只读,不可修改 
 printf("%d\n",arr);
 printf("%d\n",p);
 printf("%s\n", arr);
 return arr;
}
void test(){
 char* p = func();
 printf("%s\n",p);
}

2.3.2.4 总结

在理解C/C++内存分区时,常会碰到以下术语:数据区,堆,栈,静态区,常量区,全局区,字符串常量区,文字常量区,代码区等等,初学者被搞得云里雾里。在这里,尝试捋清楚以上分区的关系。

数据区包括:堆,栈,全局/静态存储区。

  • 全局/静态存储区包括:常量区,全局区、静态区。

  • 常量区包括:字符串常量区、常变量区。

  • 代码区:存放程序编译后的二进制代码,不可寻址区。

能够说,C/C++内存分区其实只有两个,即代码区和数据区。

2.3.3 函数调用模型

2.3.3.1 函数调用流程

栈(stack)是现代计算机程序里最为重要的概念之一,几乎每个程序都使用了栈,没有栈就没有函数,没有局部变量,也就没有咱们现在能见到的全部计算机的语言。在解释为何栈如此重要以前,咱们先了解一下传统的栈的定义:

在经典的计算机科学中,栈被定义为一个特殊的容器,用户能够将数据压入栈中(入栈,push),也能够将压入栈中的数据弹出(出栈,pop),可是栈容器必须遵循一条规则:先入栈的数据最后出栈(First In Last Out,FILO).

在经典的操做系统中,栈老是向下增加的。压栈的操做使得栈顶的地址减少,弹出操做使得栈顶地址增大。

栈在程序运行中具备极其重要的地位。最重要的,栈保存一个函数调用所须要维护的信息,这一般被称为堆栈帧(Stack Frame)或者活动记录(Activate Record).一个函数调用过程所须要的信息通常包括如下几个方面:

  • 函数的返回地址;

  • 函数的参数;

  • 临时变量;

  • 保存的上下文:包括在函数调用先后须要保持不变的寄存器。

咱们从下面的代码,分析如下函数的调用过程:

int func(int a,int b){
 int t_a = a;
 int t_b = b;
 return t_a + t_b;
}

int main(){
 int ret = 0;
 ret = func(10, 20);
 return EXIT_SUCCESS;
}

2.3.3.2 调用惯例

如今,咱们大体了解了函数调用的过程,这期间有一个现象,那就是函数的调用者和被调用者对函数调用有着一致的理解,例如,它们双方都一致的认为函数的参数是按照某个固定的方式压入栈中。若是不这样的话,函数将没法正确运行。

若是函数调用方在传递参数的时候先压入a参数,再压入b参数,而被调用函数则认为先压入的是b,后压入的是a,那么被调用函数在使用a,b值时候,就会颠倒。

所以,函数的调用方和被调用方对于函数是如何调用的必须有一个明确的约定,只有双方都遵循一样的约定,函数才可以被正确的调用,这样的约定被称为”调用惯例(Calling Convention)”.一个调用惯例通常包含如下几个方面:

函数参数的传递顺序和方式

函数的传递有不少种方式,最多见的是经过栈传递。函数的调用方将参数压入栈中,函数本身再从栈中将参数取出。对于有多个参数的函数,调用惯例要规定函数调用方将参数压栈的顺序:从左向右,仍是从右向左。有些调用惯例还容许使用寄存器传递参数,以提升性能。

栈的维护方式

在函数将参数压入栈中以后,函数体会被调用,此后须要将被压入栈中的参数所有弹出,以使得栈在函数调用先后保持一致。这个弹出的工做能够由函数的调用方来完成,也能够由函数自己来完成。

为了在连接的时候对调用惯例进行区分,调用惯例要对函数自己的名字进行修饰。不一样的调用惯例有不一样的名字修饰策略。

事实上,在c语言里,存在着多个调用惯例,而默认的是cdecl.任何一个没有显示指定调用惯例的函数都是默认是cdecl惯例。好比咱们上面对于func函数的声明,它的完整写法应该是:

int _cdecl func(int a,int b);

注意: cdecl不是标准的关键字,在不一样的编译器里可能有不一样的写法,例如gcc里就不存在_cdecl这样的关键字,而是使用__attribute_((cdecl)).

2.3.3.2 函数变量传递分析

2.3.4 栈的生长方向和内存存放方向

//1. 栈的生长方向
void test01(){

 int a = 10;
 int b = 20;
 int c = 30;
 int d = 40;

 printf("a = %d\n", &a);
 printf("b = %d\n", &b);
 printf("c = %d\n", &c);
 printf("d = %d\n", &d);

 //a的地址大于b的地址,故而生长方向向下
}

//2. 内存生长方向(小端模式)
void test02(){
 
 //高位字节 -> 地位字节
 int num = 0xaabbccdd;
 unsigned char* p = &num;

 //从首地址开始的第一个字节
 printf("%x\n",*p);
 printf("%x\n", *(p + 1));
 printf("%x\n", *(p + 2));
 printf("%x\n", *(p + 3));
}
相关文章
相关标签/搜索