小白的Python 学习笔记(六)九浅一深 lambda

lambda是什么

你们好,今天给你们带来的是有关于Python里面的lambda表达式的我的总结。lambda在Python里面的用处很广,但说实话,我我的以为有关于lambda的讨论不是如何使用,而是该不应用的问题。接下来仍是经过一些我练习的实例和你们分享个人学习经历,可能最后你也会得出和我同样的结论。python

好啦,首先让咱们先搞明白基础定义,lambda究竟是什么?api

Lambda表达了Python中用于建立匿名函数的特殊语法。咱们将lambda语法自己称为lambda表达式,从这里获得的函数称之为lambda函数。bash

其实总结起来,lambda能够理解为一个小的匿名函数,lambda函数可使用任意数量的参数,但只能有一个表达式,估计有JavaScript ES6经验的朋友们听上去会很亲切,具体函数表达式以下:数据结构

  • 模板: lambda argument: manipulate(argument)
  • 参数:argument就是这个匿名函数传入的参数,冒号后面是咱们对这个参数的操做方法

让咱们参考上面的定义模板和参数, 直接看一个最简单的例子:app

add_one = lambda x:x+1       # 1个参数,执行操做为+1
add_nums = lambda x,y:x+y    # 2个参数,执行操做为相加

print(add_one(2))            # 调用add_one
print(add_nums(3,7))         # 调用add_nums

>>>   3 
     10
复制代码

相比你们已经发现lambda匿名函数的特色了,就是对于较为简单的功能,无需本身def一个了,单行就能够写下,传参和方法内容一鼓作气函数

lambda用法详解

接下来让咱们看看lambda的实际应用,就我本身使用lambda的体验来讲,历来没有单独用过,lambda通常状况下是和map,filter,reduce这些超棒的内置函数以及dict,list,tuple,set 等数据结构混用,这样才能发挥它的最大效果,若是有朋友还不太熟悉这些内置函数,能够看一下我前一篇文章 Python 进阶之路 (五) map, filter, reduce, zip 总结post

下面让咱们一个个来看学习

lambda + map

首先是lambda+map的组合,先看下面这个例子:ui

numbers = [1,2,3,4,5]
add_one = list(map(lambda n:n+1,numbers))  #map(fun,sequence)

print(list(add_one))
print(tuple(add_one))

Out: [2, 3, 4, 5, 6]
     (2, 3, 4, 5, 6)
复制代码

这个上一篇文章的例子,实现一个List或者Tuple中每一个元素+1,让咱们看一下这个例子中map和lambda的用法:spa

  • map(fun,sequence),fun是传递的方法,sequence是一个可迭代的序列,这里咱们的fun就是匿名函数
  • lambda n:n+1,这里很是完美的解释了lambda的设计初衷,由于若是没有lambda,咱们的解决方案是这样:
def add(num):
    return num+1

numbers = [1,2,3,4,5]
add_one = list(map(add,numbers))
print(add_one)
print(tuple(add_one))
复制代码

显然易见,这里的add方法有点多余,因此用lambda代替是个好的选择。

下面这段代码,这是我本身备份日志时写的,命名不是很规范:

from datetime import datetime as dt
logs = ['serverLog','appLog','paymentLog']
format ='_{}.py'.format(dt.now().strftime('%d-%m-%y'))
result =list(map(lambda x:x+format,logs))   # 利用map+lambda 实现字符串拼接
print(result)

Out:['serverLog_11-02-19.py', 'appLog_11-02-19.py', 'paymentLog_11-02-19.py']

复制代码

这里和刚才的加1例子差很少,可是换成了字符串的拼接,然而我这里用lambda并非很好的解决方案,最后咱们会说。

如今你们应该对map + lambda 有一些感受了,让咱们再来个和dict字典互动的例子:

person =[{'name':'Lilei',
          'city':'beijing'},
         {'name':'HanMeiMei',
          'city':'shanghai'}]

names=list(map(lambda x:x['name'],person))
print(names)

Out:['Lilei', 'HanMeiMei']

复制代码

好了,看到这里对于map+lambda的用法你们已经很清楚了应该~

lambda + filter

lambda和filter的组合也很常见,用于特定筛选条件下,如今让咱们来看上篇文章filter的例子,就应该很好理解了:

numbers = [0, 1, 2, -3, 5, -8, 13]

# 提取奇数
result = filter(lambda x: x % 2, numbers)
print("Odd Numbers are :",list(result))

# 提取偶数
result = filter(lambda x: x % 2 == 0, numbers)
print("Even Numbers are :",list(result))

#提取正数
result = filter(lambda x: x>0, numbers)
print("Positive Numbers are :",list(result))

Out:Odd Numbers are : [1, -3, 5, 13]
     Even Numbers are : [0, 2, -8]
     Positive Numbers are : [1, 2, 5, 13]
复制代码

这里无非就是咱们把filter(fun,sequence)里面的fun换成了咱们的lambda,只是lambda的函数部分(x%2,x%2==0,x>0)都是能够返回True或者False来判断的,符合fiter的要求,用刚才李雷和韩梅梅的例子也是一个道理:

person =[{'name':'Lilei',
          'city':'beijing'},
         {'name':'HanMeiMei',
          'city':'shanghai'}]

names=list(filter(lambda x:x['name']=='Lilei',person)) # 提取李雷的信息
print(names)

Out:[{'name': 'Lilei', 'city': 'beijing'}]

复制代码

lambda + reduce

仍是让咱们看一下上篇文章的例子:

from functools import reduce          # Only Python 3
numbers = [1,2,3,4]
result_multiply = reduce((lambda x, y: x * y), numbers)
result_add = reduce((lambda x,y: x+y), numbers)

print(result_multiply)
print(result_add)

Out:24
     10
复制代码

这个例子用lambda和reduce的配合实现了list求累积和和累积乘法。 有意思的是这个例子具备两面性,一方面展现了lambda和reduce如何一块儿使用,另外一方面也引出了接下来我想说的重点:lambda真的值得用吗?到底应该怎么用?

避免过分使用lambda

经过上面的例子你们已经看到了lambda的实际应用场景,可是我我的以为lambda的缺点略多于优势,应该尽可能避免使用

首先,这仅仅是个人我的见解哈,但愿你们理解,我为何这么说呢,首先让咱们拿lambda方法和常规def作个对比,我发现lambda和def的主要不一样点以下:

  • 能够当即传递(无需变量)
  • 只需一行代码,简洁(未必高效)
  • 能够会自动返回,无需return
  • lambda函数没有函数名称

有关优势你们均可以看到,我主要想说一下它的缺点,首先,从真正需求出发,咱们在大多数时候是不须要lambda的,由于总能够找到更好的替代方法,如今咱们一块儿看一下刚才lambda+reduce 的例子,咱们用lambada实现的结果以下:

from functools import reduce          # Only Python 3
numbers = [1,2,3,4]
result_multiply = reduce((lambda x, y: x * y), numbers)
result_add = reduce((lambda x,y: x+y), numbers)
复制代码

这里用lambda并无实现简单高效的目的,由于咱们有现成的sum和mul方法能够用:

from functools import reduce
from operator import mul

numbers = [1,2,3,4]
result_add = sum(numbers)
result_multiply =reduce(mul,numbers)

print(result_add)
print(result_multiply)

Out: 10
     24

复制代码

结果是同样的,可是显然用sum和mul的方案更加高效。再举个常见的例子说明,假如咱们有一个list存储了各类颜色,如今要求把每一个颜色首字母大写,若是用lambda写出是这样:

colors = ['red','purple','green','blue']
result = map(lambda c:c.capitalize(),colors)
print(list(result))

Out:['Red', 'Purple', 'Green', 'Blue']

复制代码

看着彷佛不错,挺简洁的,可是咱们有更好的方法:

colors = ['red','purple','green','blue']
result = [c.capitalize() for c in colors]
print(result)

Out:['Red', 'Purple', 'Green', 'Blue']

复制代码

用sorted还能处理首字母不规范的状况,连排序都省了:

colors = ['Red','purple','Green','blue']
print(sorted(colors,key=str.capitalize))

Out:['blue', 'Green', 'purple', 'Red']

复制代码

还有一个主要缘由就是: lambda函数没有函数名称。因此在代码交接,项目移植的场景中会给团队带来不少困难,多写个函数add_one()没什么坏处,由于你们都很容易理解,知道它是执行+1的功能,可是若是团队里你在本身负责的模块使用了不少lambda,会给其余人理解带来不少麻烦

适合lambda的场景

话又说回来,存在即合理,那么真正须要咱们使用lambda的是哪些场景呢:

  1. 你须要的方法是很简单的(+1,字符串拼接等),该函数不值得拥有一个名字
  2. 使用lambda表达式,会比咱们能想到的函数名称更容易理解
  3. 除了lambda,没有任何python提供的函数能够实现目的
  4. 团队中全部成员都掌握lambda,你们赞成你用

还有一种场景很是适用,就是在给其余人制造本身很专业的错觉时,好比:

哎呀,小老弟,据说你学了Python,知道lambda不? 没听过?不行啊,白学了!来来来,让我给你讲讲。。。此处省略1万字

总结

今天为你们九浅一深地讲解了lambda的用法和使用场景,所谓九浅一深,就是90%状况下用于建立简单的匿名函数,10%的状况稍微复杂(这个借口找的太好了)

总而言之,任何事情都具备两面性,每次当你想用lambda以前应该先停下来,问问本身是否是真的须要它。

固然,若是须要和别人忽悠的时候都是正反一张嘴,lambda是好是坏全看咱们本身怎么说,吹牛时请遵照以下原则,屡试不爽:

若是你说一个女大学生晚上卖淫就是可耻,但若是改为一个妓女利用业余时间努力学习就励志多了

lambda也是如此

相关文章
相关标签/搜索