ROC曲线和PR(Precision-Recall)曲线的联系

在机器学习中,ROC(Receiver Operator Characteristic)曲线被广泛应用于二分类问题中来评估分类器的可信度,但是当处理一些高度不均衡的数据集时,PR曲线能表现出更多的信息,发现更多的问题。 1.ROC曲线和PR曲线是如何画出来的? 在二分类问题中,分类器将一个实例的分类标记为是或否,这可以用一个混淆矩阵来表示。混淆矩阵有四个分类,如下表: actual positiv
相关文章
相关标签/搜索