Android性能优化之GraphicsStatsService(2)

这篇博客参考老罗的文章:http://blog.csdn.net/luoshengyang/article/details/45601143。java

1.JankTracker的初始化流程

上一篇博客详细分析了GraphicsStatsService的工做流程,还遗留了一个问题就是各类卡顿类型的信息具体是怎么统计的。在回答这个问题以前咱们先来看另一个疑问:android

上一篇博客中说过,JankTracker是在initThreadLocal()中被初始化的:canvas

void RenderThread::initThreadLocals() {
    nsecs_t frameIntervalNanos = static_cast<nsecs_t>(1000000000 / mDisplayInfo.fps);
    mTimeLord.setFrameInterval(frameIntervalNanos);
    initializeDisplayEventReceiver();
    mEglManager = new EglManager(*this);
    mRenderState = new RenderState(*this);
    mJankTracker = new JankTracker(frameIntervalNanos);
}

这个函数定义在文件frameworks/base/libs/hwui/renderthread/RenderThread.cpp中。windows

那么这initThreadLocal()怎么被调用的呢?让咱们从硬件渲染的初始化流程开始提及数组

根据老罗的博客,Activity组件在建立的过程当中,也就是在其生命周期函数onCreate的调用过程当中,通常会经过调用另一个成员函数 setContentView建立和初始化关联的窗口视图,最后经过调用ViewRoot类的成员函数setView完成这一过程。到了Android 4.0以后,ViewRoot类的名字改为了ViewRootImpl,它们的做用仍然同样的。       app

Android应用程序UI硬件加速渲染环境的初始化过程是在ViewRootImpl类的成员函数setView开始,以下:ide

public final class ViewRootImpl implements ViewParent,
        View.AttachInfo.Callbacks, HardwareRenderer.HardwareDrawCallbacks {
    ......

    public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) {
        synchronized (this) {
            if (mView == null) {
                mView = view;
                ......

                if (view instanceof RootViewSurfaceTaker) {
                    mSurfaceHolderCallback =
                            ((RootViewSurfaceTaker)view).willYouTakeTheSurface();
                    if (mSurfaceHolderCallback != null) {
                        mSurfaceHolder = new TakenSurfaceHolder();
                        mSurfaceHolder.setFormat(PixelFormat.UNKNOWN);
                    }
                }

                ......

                // If the application owns the surface, don't enable hardware acceleration
                if (mSurfaceHolder == null) {
                    enableHardwareAcceleration(attrs);
                }

                ......
            }
        }
    }

    ......
}

这个函数定义在文件frameworks/base/core/java/android/view/ViewRootImpl.java中。函数

参数view描述的是当前正在建立的Activity窗口的顶级视图。若是它实现了RootViewSurfaceTaker接口,而且经过该接口的成 员函数willYouTakeTheSurface提供了一个SurfaceHolder.Callback2接口,那么就代表应用程序想本身接管对窗口 的一切渲染操做。这样建立出来的Activity窗口就相似于一个SurfaceView同样,彻底由应用程序本身来控制它的渲染。oop

       基本上咱们是不会将一个Activity窗口看成一个SurfaceView来使用的,所以在ViewRootImpl类的成员变量 mSurfaceHolder将保持为null值,这样就会致使ViewRootImpl类的成员函数 enableHardwareAcceleration被调用为判断是否须要为当前建立的Activity窗口启用硬件加速渲染。post

private void enableHardwareAcceleration(WindowManager.LayoutParams attrs) {
        mAttachInfo.mHardwareAccelerated = false;
        mAttachInfo.mHardwareAccelerationRequested = false;

        // Don't enable hardware acceleration when the application is in compatibility mode
        if (mTranslator != null) return;

        // Try to enable hardware acceleration if requested
        final boolean hardwareAccelerated =
                (attrs.flags & WindowManager.LayoutParams.FLAG_HARDWARE_ACCELERATED) != 0;

        if (hardwareAccelerated) {
            if (!HardwareRenderer.isAvailable()) {
                return;
            }

            // Persistent processes (including the system) should not do
            // accelerated rendering on low-end devices.  In that case,
            // sRendererDisabled will be set.  In addition, the system process
            // itself should never do accelerated rendering.  In that case, both
            // sRendererDisabled and sSystemRendererDisabled are set.  When
            // sSystemRendererDisabled is set, PRIVATE_FLAG_FORCE_HARDWARE_ACCELERATED
            // can be used by code on the system process to escape that and enable
            // HW accelerated drawing.  (This is basically for the lock screen.)

            final boolean fakeHwAccelerated = (attrs.privateFlags &
                    WindowManager.LayoutParams.PRIVATE_FLAG_FAKE_HARDWARE_ACCELERATED) != 0;
            final boolean forceHwAccelerated = (attrs.privateFlags &
                    WindowManager.LayoutParams.PRIVATE_FLAG_FORCE_HARDWARE_ACCELERATED) != 0;

            if (fakeHwAccelerated) {
                // This is exclusively for the preview windows the window manager
                // shows for launching applications, so they will look more like
                // the app being launched.
                mAttachInfo.mHardwareAccelerationRequested = true;
            } else if (!HardwareRenderer.sRendererDisabled
                    || (HardwareRenderer.sSystemRendererDisabled && forceHwAccelerated)) {
                if (mAttachInfo.mHardwareRenderer != null) {
                    mAttachInfo.mHardwareRenderer.destroy();
                }

                final boolean translucent = attrs.format != PixelFormat.OPAQUE;
                mAttachInfo.mHardwareRenderer = HardwareRenderer.create(mContext, translucent);
                if (mAttachInfo.mHardwareRenderer != null) {
                    mAttachInfo.mHardwareRenderer.setName(attrs.getTitle().toString());
                    mAttachInfo.mHardwareAccelerated =
                            mAttachInfo.mHardwareAccelerationRequested = true;
                }
            }
        }
    }

这个函数定义在文件frameworks/base/core/java/android/view/ViewRootImpl.java中。

这里面的大部分操做都是在处理是否开始硬件加速。虽然硬件加速渲染是个好东西,可是也不是每个须要绘制UI的进程都必需的。这样作是考虑到两个因素。第一个因素是并非全部的Canvas API均可以被GPU支持。若是应用程序使用到了这些不被GPU支持的API,那么就须要禁用硬件加速渲染。第二个因素是支持硬件加速渲染的代价是增长了 内存开销。例如,只是硬件加速渲染环境初始化这一操做,就要花掉8M的内存。因此有的进程就不适合开启硬件加速,主要是Persistent进程和System进程,详细看老罗博客。

上述代码中重点的是这句:

mAttachInfo.mHardwareRenderer = HardwareRenderer.create(mContext, translucent);

若是当前建立的窗口支持硬件加速渲染,那么就会调用HardwareRenderer类的静态成员函数create建立一个 HardwareRenderer对象,而且保存在与该窗口关联的一个AttachInfo对象的成员变量mHardwareRenderer 中。这个HardwareRenderer对象之后将负责执行窗口硬件加速渲染的相关操做。

那么这个HardwareRenderer是何方神圣呢?让咱们继续往下看。

public abstract class HardwareRenderer {
    ......

    static HardwareRenderer create(Context context, boolean translucent) {
        HardwareRenderer renderer = null;
        if (GLES20Canvas.isAvailable()) {
            renderer = new ThreadedRenderer(context, translucent);
        }
        return renderer;
    }

    ......
}

这个函数定义在文件frameworks/base/core/java/android/view/HardwareRenderer.java。

能够看到,若是当前设备支持GLES2.0,才能开启硬件加速,经过ThreadedRenderer来完成这个加速任务。这个类继承于HardwareRenderer。这意思着Android硬件加速目前只支持GLES?

接下来咱们就继续分析ThreadedRenderer对象的建立过程,以下所示:

public class ThreadedRenderer extends HardwareRenderer {
    ......

    private long mNativeProxy;
    ......
    private RenderNode mRootNode;
    ......

    ThreadedRenderer(Context context, boolean translucent) {
        ......

        long rootNodePtr = nCreateRootRenderNode();
        mRootNode = RenderNode.adopt(rootNodePtr);
        ......
        mNativeProxy = nCreateProxy(translucent, rootNodePtr);

        AtlasInitializer.sInstance.init(context, mNativeProxy);

        ......
    }

    ......
}

能够看到,ThreadedRenderer在构造函数中主要干了三件事,新建了一个RootRenderNode,一个ThreadProxy和调用AtlasInitializer进行资源集的初始化。

这里咱们先看看第二个,由于这玩意儿上一篇博客咱们好像看过。很明显这是一个JNI调用,Native层对应的实现是:

static jlong android_view_ThreadedRenderer_createProxy(JNIEnv* env, jobject clazz,
        jboolean translucent, jlong rootRenderNodePtr) {
    RootRenderNode* rootRenderNode = reinterpret_cast<RootRenderNode*>(rootRenderNodePtr);
    ContextFactoryImpl factory(rootRenderNode);
    return (jlong) new RenderProxy(translucent, rootRenderNode, &factory);
}

这个函数定义在文件frameworks/base/core/jni/android_view_ThreadedRenderer.cpp中。

这里利用了上面生成的rootRenderNode来生成了一个RenderProxy,看来这个rootRenderNode仍是挺重要的,之后有机会再看吧,先看看RenderProxy的构造函数:

RenderProxy::RenderProxy(bool translucent, RenderNode* rootRenderNode, 
     IContextFactory* contextFactory)
        : mRenderThread(RenderThread::getInstance())
        , mContext(0) {
    SETUP_TASK(createContext);
    args->translucent = translucent;
    args->rootRenderNode = rootRenderNode;
    args->thread = &mRenderThread;
    args->contextFactory = contextFactory;
    mContext = (CanvasContext*) postAndWait(task);
    mDrawFrameTask.setContext(&mRenderThread, mContext);
}

这个函数定义在文件frameworks/base/libs/hwui/renderthread/RenderProxy.cpp中。

RenderProxy类有三个重要的成员变量mRenderThread、mContext和mDrawFrameTask,它们的类型分别为 RenderThread、CanvasContext和DrawFrameTask。其中,mRenderThread描述的就是Render Thread,mContext描述的是一个画布上下文,mDrawFrameTask描述的是一个用来执行渲染任务的Task。接下来咱们先重点分析RenderThread的初始化过程。

从构造函数中能够看出,mRenderThread的默认值是RenderThread::getInstance(),这个应该是个单例模式,也就是说在一个Android应用程序进程中,只有一个Render Thread存在。

继续看RenderThread的构造过程:

RenderThread::RenderThread() : Thread(true), Singleton<RenderThread>()
        ...... {
    mFrameCallbackTask = new DispatchFrameCallbacks(this);
    mLooper = new Looper(false);
    run("RenderThread");
}

这个函数定义在文件frameworks/base/libs/hwui/renderthread/RenderThread.cpp中。

这里一样也干了三件事情,新建了一个DispatchFrameCallbacks,一个Looper和调用了run函数。

 DispatchFrameCallbacks对象,用来描述一个帧绘制任务。下面描述RenderThread的运行模型时,咱们再详细分析。RenderThread类的成员变量mLooper指向一个Looper对象,RenderThread经过它来建立一个消息驱动运行模型,相似于Main Thread的消息驱动运行模型。

RenderThread类是从Thread类继承下来的,当咱们调用它的成员函数run的时候,就会建立一个新的线程。这个新的线程的入口点函数为RenderThread类的成员函数threadLoop,它的实现以下所示:

bool RenderThread::threadLoop() {
    .......
    initThreadLocals();

    int timeoutMillis = -1;
    for (;;) {
        int result = mLooper->pollOnce(timeoutMillis);
        ......

        nsecs_t nextWakeup;
        // Process our queue, if we have anything
        while (RenderTask* task = nextTask(&nextWakeup)) {
            task->run();
            // task may have deleted itself, do not reference it again
        }
        if (nextWakeup == LLONG_MAX) {
            timeoutMillis = -1;
        } else {
            nsecs_t timeoutNanos = nextWakeup - systemTime(SYSTEM_TIME_MONOTONIC);
            timeoutMillis = nanoseconds_to_milliseconds(timeoutNanos);
            if (timeoutMillis < 0) {
                timeoutMillis = 0;
            }
        }

        if (mPendingRegistrationFrameCallbacks.size() && !mFrameCallbackTaskPending) {
            drainDisplayEventQueue(true);
            mFrameCallbacks.insert(
                    mPendingRegistrationFrameCallbacks.begin(), 
             mPendingRegistrationFrameCallbacks.end());
            mPendingRegistrationFrameCallbacks.clear();
            requestVsync();
        }
    }

    return false;
}

这个函数定义在文件frameworks/base/libs/hwui/renderthread/RenderThread.cpp中。

在这里终于看了咱们索要找的initThreadLocals()!很激动有木有~也就是说在硬件初始化渲染的时候,即当一个窗口视图初始化的时候,其对应的JankTracker就已经被创建起来了,等到窗口视图真正渲染的时候,用来统计渲染信息。

2.渲染统计信息的收集过程

接上一篇博客,要弄懂渲染信息的收集过程,咱们就得知道JankTracker::addFrame是在哪里被调用的。首先让咱们回头去看看这个函数:

void JankTracker::addFrame(const FrameInfo& frame) {
    mData->totalFrameCount++;
    using namespace FrameInfoIndex;
    // Fast-path for jank-free frames
    int64_t totalDuration = frame[kFrameCompleted] - frame[kIntendedVsync];
    uint32_t framebucket = frameCountIndexForFrameTime(
            totalDuration,  (sizeof(mData->frameCounts) / sizeof(mData->frameCounts[0])) );
    //keep the fast path as fast as possible
    if (CC_LIKELY(totalDuration < mFrameInterval)) {
        mData->frameCounts[framebucket]++;
        return;
    }

    //exempt this frame, so drop it
    if (frame[kFlags] & EXEMPT_FRAMES_FLAGS) {
        return;
    }

    mData->frameCounts[framebucket]++;
    mData->jankFrameCount++;

    for (int i = 0; i < NUM_BUCKETS; i++) {
        int64_t delta = frame[COMPARISONS[i].end] - frame[COMPARISONS[i].start];
        if (delta >= mThresholds[i] && delta < IGNORE_EXCEEDING) {
            mData->jankTypeCounts[i]++;
        }
    }
}

咱们能够发现,这个函数有一个重要的参数FrameInfo类型的frame!这好像仍是个数组。统计信息就是直接从它身上取出来的。赶忙地,咱们去看看这个类:

class FrameInfo {
public:
    void importUiThreadInfo(int64_t* info);

    void markSyncStart() {
        mFrameInfo[FrameInfoIndex::kSyncStart] = systemTime(CLOCK_MONOTONIC);
    }

    void markIssueDrawCommandsStart() {
        mFrameInfo[FrameInfoIndex::kIssueDrawCommandsStart] = systemTime(CLOCK_MONOTONIC);
    }

    void markSwapBuffers() {
        mFrameInfo[FrameInfoIndex::kSwapBuffers] = systemTime(CLOCK_MONOTONIC);
    }

    void markFrameCompleted() {
        mFrameInfo[FrameInfoIndex::kFrameCompleted] = systemTime(CLOCK_MONOTONIC);
    }

    int64_t operator[](FrameInfoIndexEnum index) const {
        if (index == FrameInfoIndex::kNumIndexes) return 0;
        return mFrameInfo[static_cast<int>(index)];
    }

    int64_t operator[](int index) const {
        if (index < 0 || index >= FrameInfoIndex::kNumIndexes) return 0;
        return mFrameInfo[static_cast<int>(index)];
    }

private:
    int64_t mFrameInfo[FrameInfoIndex::kNumIndexes];
};

这个类定义在frameworks/base/libs/hwui/FrameInfo.h文件中

能够看到,FrameInfo里面有不少markXXXStart的函数,这些函数的功能都是一样的,就是记录系统如今的时间放在mFrameInfo的不一样位置中!很明显,这是在记录一个帧每个渲染阶段的开始时间,以便后来作卡顿的统计。

同时在同一个文件中,还有另一个类UiFrameInfoBuilder

class ANDROID_API UiFrameInfoBuilder {
public:
    UiFrameInfoBuilder(int64_t* buffer) : mBuffer(buffer) {
        memset(mBuffer, 0, UI_THREAD_FRAME_INFO_SIZE * sizeof(int64_t));
    }

    UiFrameInfoBuilder& setVsync(nsecs_t vsyncTime, nsecs_t intendedVsync) {
        mBuffer[FrameInfoIndex::kVsync] = vsyncTime;
        mBuffer[FrameInfoIndex::kIntendedVsync] = intendedVsync;
        return *this;
    }

    UiFrameInfoBuilder& addFlag(FrameInfoFlagsEnum flag) {
        mBuffer[FrameInfoIndex::kFlags] |= static_cast<uint64_t>(flag);
        return *this;
    }

private:
    int64_t* mBuffer;
};

一样这里的setVsync函数记录了kVsync和kIntendedVsync的时间。所以,如今的问题就变成了这个函数和上面的那些markXXXStart函数是在何时被调用的?

经过搜索,咱们能够发现,这些函数都是在同一个类中被调用的,那就是CanvasContext!主要涉及到两个函数:CanvasContext::prepareTree和CanvasContext::draw。下面咱们看看这个三个函数,咱们按时间的前后一个个看:

// Called by choreographer to do an RT-driven animation
void CanvasContext::doFrame() {
   ...
    int64_t frameInfo[UI_THREAD_FRAME_INFO_SIZE];
    UiFrameInfoBuilder(frameInfo)
        .addFlag(FrameInfoFlags::kRTAnimation)
        .setVsync(mRenderThread.timeLord().computeFrameTimeNanos(),
                mRenderThread.timeLord().latestVsync());

    TreeInfo info(TreeInfo::MODE_RT_ONLY, mRenderThread.renderState());
    prepareTree(info, frameInfo);
    if (info.out.canDrawThisFrame) {
        draw();
    }
}

这个doFrame函数定义在frameworks/base/libs/hwui/renderthread/CanvasContext.cpp中。

该函数首先新建了一个frameInfo数组来存放帧的各类渲染信息,大小是UI_THREAD_FRAME_INFO_SIZE,实际上是9,具体的定义以下:

#define UI_THREAD_FRAME_INFO_SIZE 9

HWUI_ENUM(FrameInfoIndex,
    kFlags = 0,
    kIntendedVsync,
    kVsync,
    kOldestInputEvent,
    kNewestInputEvent,
    kHandleInputStart,
    kAnimationStart,
    kPerformTraversalsStart,
    kDrawStart,
    // End of UI frame info

    kSyncStart,
    kIssueDrawCommandsStart,
    kSwapBuffers,
    kFrameCompleted,

    // Must be the last value!
    kNumIndexes
);

这个枚举定义在frameworks/base/libs/hwui/FrameInfo.h中

这个9其实就是下面的HWUI_ENUM枚举类型前9个的意思,能够从注释中看到,这9个是UI帧的信息。

而后doFrame调用了UiFrameInfoBuilder来添加两个重要的时间,kVsync和kIntendedVsync,这两个是都是经过调用mRenderThread.timeLord()的相关函数来得到。再接着定义了一个TreeInfo类型的info,并和frameInfo传给了prepareTree。下面咱们看看prepareTree。

void CanvasContext::prepareTree(TreeInfo& info, int64_t* uiFrameInfo) {
    mRenderThread.removeFrameCallback(this);

    mCurrentFrameInfo = &mFrames.next();
    mCurrentFrameInfo->importUiThreadInfo(uiFrameInfo);
    mCurrentFrameInfo->markSyncStart();

    info.damageAccumulator = &mDamageAccumulator;
    info.renderer = mCanvas;
    if (mPrefetechedLayers.size() && info.mode == TreeInfo::MODE_FULL) {
        info.canvasContext = this;
    }
    mAnimationContext->startFrame(info.mode);
    mRootRenderNode->prepareTree(info);
    mAnimationContext->runRemainingAnimations(info);

    if (info.canvasContext) {
        freePrefetechedLayers();
    }
    ...
    int runningBehind = 0;
    // TODO: This query is moderately expensive, investigate adding some sort
    // of fast-path based off when we last called eglSwapBuffers() as well as
    // last vsync time. Or something.
    mNativeWindow->query(mNativeWindow.get(),
            NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND, &runningBehind);
    info.out.canDrawThisFrame = !runningBehind;

    if (info.out.hasAnimations || !info.out.canDrawThisFrame) {
        if (!info.out.requiresUiRedraw) {
            // If animationsNeedsRedraw is set don't bother posting for an RT anim
            // as we will just end up fighting the UI thread.
            mRenderThread.postFrameCallback(this);
        }
    }
}

这个函数定义在frameworks/base/libs/hwui/renderthread/CanvasContext.cpp中,

这个函数首先调用mFrames.next()取出了一个mCurrentFrameInfo,而后经过importUiThreadInfo导入传过来的那个uiFrameInfo,而后调用markSyncStart()记录了SyncStart的时间点,代表Sync已经开始了,紧接着才开始进行真正的业务处理,例如处理一些相关的动画,和调用mRootRenderNode->prepareTree(info)来真正准备ViewTree,这应该是一个上传视图到GPU的过程。

prepareTree完成了之后,返回到frameInfo中,若是这个准备是成功的,下面就能够调用Draw函数立刻开始绘制啦:

void CanvasContext::draw() {
    ...
    mCurrentFrameInfo->markIssueDrawCommandsStart();

    SkRect dirty;
    mDamageAccumulator.finish(&dirty);

    EGLint width, height;
    mEglManager.beginFrame(mEglSurface, &width, &height);
    if (width != mCanvas->getViewportWidth() || height != mCanvas->getViewportHeight()) {
        mCanvas->setViewport(width, height);
        dirty.setEmpty();
    } else if (!mBufferPreserved || mHaveNewSurface) {
        dirty.setEmpty();
    } else {
        if (!dirty.isEmpty() && !dirty.intersect(0, 0, width, height)) {
            ALOGW("Dirty " RECT_STRING " doesn't intersect with 0 0 %d %d ?",
                    SK_RECT_ARGS(dirty), width, height);
            dirty.setEmpty();
        }
        profiler().unionDirty(&dirty);
    }

    status_t status;
    if (!dirty.isEmpty()) {
        status = mCanvas->prepareDirty(dirty.fLeft, dirty.fTop,
                dirty.fRight, dirty.fBottom, mOpaque);
    } else {
        status = mCanvas->prepare(mOpaque);
    }

    Rect outBounds;
    status |= mCanvas->drawRenderNode(mRootRenderNode.get(), outBounds);

    profiler().draw(mCanvas);

    mCanvas->finish();

    profiler().markPlaybackEnd();

    // Even if we decided to cancel the frame, from the perspective of jank
    // metrics the frame was swapped at this point
    mCurrentFrameInfo->markSwapBuffers();

    if (status & DrawGlInfo::kStatusDrew) {
        swapBuffers();
    } else {
        mEglManager.cancelFrame();
    }

    // TODO: Use a fence for real completion?
    mCurrentFrameInfo->markFrameCompleted();
    mJankTracker.addFrame(*mCurrentFrameInfo);
    mRenderThread.jankTracker().addFrame(*mCurrentFrameInfo);
    profiler().finishFrame();
}

这个函数定义在frameworks/base/libs/hwui/renderthread/CanvasContext.cpp中,

一进来,就调用了markIssueDrawCommandsStart()记录绘制命令开始的时间,而后作了一大堆的工做,都是在设置一个dirty和mCanvas,弄好了之后调用mCanvas->drawRenderNode、profiler().draw(mCanvas),mCanvas->finish()标志着绘制工做的完成。

随后,调用markSwapBuffers()来记录开始交换缓冲区的时间,这是要开始显示了么?接着调用swapBuffers()来进行真正的缓冲交换工做,交换结束之后,这一个帧的绘制就所有完成了,调用markFrameCompleted()来记录绘制的结束时间,最后这些记录在mCurrentFrameInfo的帧信息添加到咱们的mJankTracker中,这样,JankTracker就能统计渲染信息啦。

这样,大部分的时间节点的记录已是清除的了,除了两个:kVsync和kIntendedVsync,前面说过,这两个函数是由mRenderThread.timeLord().computeFrameTimeNanos()和mRenderThread.timeLord(). latestVsync()取得的。

nsecs_t TimeLord::computeFrameTimeNanos() {
    // Logic copied from Choreographer.java
    nsecs_t now = systemTime(CLOCK_MONOTONIC);
    nsecs_t jitterNanos = now - mFrameTimeNanos;
    if (jitterNanos >= mFrameIntervalNanos) {
        nsecs_t lastFrameOffset = jitterNanos % mFrameIntervalNanos;
        mFrameTimeNanos = now - lastFrameOffset;
    }
    return mFrameTimeNanos;
}

这个函数定义在frameworks/base/libs/hwui/renderthread/TimeLord.cpp

能够看到这个函数除了特殊状况下作了修正以外,是直接返回mFrameTimeNanos的。因此要看一下这个mFrameTimeNanos是怎么被赋值的。就在同一个文件中:

bool TimeLord::vsyncReceived(nsecs_t vsync) {
    if (vsync > mFrameTimeNanos) {
        mFrameTimeNanos = vsync;
        return true;
    }
    return false;
}

mFrameTimeNanos被初始化为0,因此当这个函数被调用的时候,vsync > mFrameTimeNanos成立,因此mFrameTimeNanos被赋值为vsync,从函数名咱们能够知道mFrameTimeNanos记录的就是接收到vsync的时间,即kVsync的时间。

相关文章
相关标签/搜索