南京大学提出SSWL模型:从半监督弱标注数据中学习多标签学习问题

在多标签学习中,通常我们会假设一个实例的所有标签都已知,但现实情况并不如此。在 AAAI 2018 所接收的论文中,南京大学周志华组提出了从半监督弱标注数据中学习并处理多标签学习问题。该方法假设实例和标签的相似性有助于补充缺失的标签。而且,当标签信息不足时,多个模型的集成通常比单个模型更有效。 传统的监督式学习通常假设每个实例都与一个标签相关联。然而,在现实生活的许多任务中,一个实例通常不止一个标
相关文章
相关标签/搜索