策略模式(strategy):定义一组算法,将每一个算法都封装起来,而且使它们之间能够互换。java
商城搞多种优惠活动,顾客只能参与其中一种优惠算法。
算法
类图
spring
FullDistcount
满200减20元;FirstPurchaseDiscount
首次购买减20元;SecondPurchaseDiscount
第二件打9折;HolidayDiscount
节日一概减5元.代码实现以下,环境类数组
package com.wzj.strategy; /** * @Author: wzj * @Date: 2020/5/5 21:25 * @Desc: 优惠类:环境类 */ public class Context { private int price; private Discount discount; public Context(int price, Discount discount) { this.price = price; this.discount = discount; } public int getPrice() { return this.discount.calculateBySourcePrice(this.price); } }
折扣接口类app
package com.wzj.strategy; /** * @Author: wzj * @Date: 2020/5/5 20:56 * @Desc: 折扣优惠接口 */ public interface Discount { public int calculateBySourcePrice(int price); }
满减优惠ide
package com.wzj.strategy; /** * @Author: wzj * @Date: 2020/5/5 20:57 * @Desc: 优惠满减20元 */ public class FullDiscount implements Discount { @Override public int calculateBySourcePrice(int price) { if (price > 200){ System.out.println("优惠满减20元"); price = price - 20; } return price; } }
首次优惠类函数
package com.wzj.strategy; /** * @Author: wzj * @Date: 2020/5/5 21:11 * @Desc: 首次购买减20元 */ public class FirstPurchaseDiscount implements Discount { @Override public int calculateBySourcePrice(int price) { if (price > 100){ System.out.println("首次购买减20元"); price = price - 20; } return price; } }
第二件优惠类测试
package com.wzj.strategy; /** * @Author: wzj * @Date: 2020/5/5 21:05 * @Desc: 第二件打9折 */ public class SecondPurchaseDiscount implements Discount { @Override public int calculateBySourcePrice(int price) { System.out.println("第二件打9折"); Double balance = price * 0.9; return balance.intValue(); } }
节假日优惠类ui
package com.wzj.strategy; /** * @Author: wzj * @Date: 2020/5/5 21:09 * @Desc: 节日一概减5元 */ public class HolidayDiscount implements Discount { @Override public int calculateBySourcePrice(int price) { if (price > 20){ System.out.println("节日一概减5元"); price = price - 5; } return price; } }
测试类this
package com.wzj.strategy; /** * @Author: wzj * @Date: 2020/5/5 21:35 * @Desc: 测试类 */ public class TestStrategy { public static void main(String[] args) { Discount discount = new FirstPurchaseDiscount(); Context context = new Context(110, discount); int price = context.getPrice(); System.out.println(price); } }
结果
首次购买减20元 90
Comparable,在jdk1.8中描述以下,实现该接口的对象的List和array,能够经过Collections.sort和Arrays.sort自动排序,该对象具有sorted map的key和sorted set的元素的特征。
源码解析
public interface Comparable<T> { public int compareTo(T o); }
该接口实现一个抽象方法compareTo,定义两个对象的比较方式,返回值大于0、等于0、小于0,分别表示当前对象与传入对象的关系为大于、相等、小于。
Comparator为比较器,它能够做为一个参数传递到Collections.sort和Arrays.sort方法来指定某个类对象的排序方式。同时它也能为sorted set和sorted map指定排序方式。
源码解析
@FunctionalInterface public interface Comparator<T> { // 惟一的抽象方法,用于定义比较方式(即排序方式) // o1>o2,返回1;o1=o2,返回0;o1<o2,返回-1 int compare(T o1, T o2); boolean equals(Object obj); // 1.8新增的默认方法:用于反序排列 default Comparator<T> reversed() { return Collections.reverseOrder(this); } // 1.8新增的默认方法:用于构建一个次级比较器,当前比较器比较结果为0,则使用次级比较器比较 default Comparator<T> thenComparing(Comparator<? super T> other) { Objects.requireNonNull(other); return (Comparator<T> & Serializable) (c1, c2) -> { int res = compare(c1, c2); return (res != 0) ? res : other.compare(c1, c2); }; } // 1.8新增默认方法:指定次级比较器的 // keyExtractor表示键提取器,定义提取方式 // keyComparator表示键比较器,定义比较方式 default <U> Comparator<T> thenComparing( Function<? super T, ? extends U> keyExtractor, Comparator<? super U> keyComparator) { return thenComparing(comparing(keyExtractor, keyComparator)); } // 1.8新增默认方法:用于执行键的比较,采用的是由键对象内置的比较方式 default <U extends Comparable<? super U>> Comparator<T> thenComparing( Function<? super T, ? extends U> keyExtractor) { return thenComparing(comparing(keyExtractor)); } // 1.8新增默认方法:用于比较执行int类型的键的比较 default Comparator<T> thenComparingInt(ToIntFunction<? super T> keyExtractor) { return thenComparing(comparingInt(keyExtractor)); } // 1.8新增默认方法:用于比较执行long类型的键的比较 default Comparator<T> thenComparingLong(ToLongFunction<? super T> keyExtractor) { return thenComparing(comparingLong(keyExtractor)); } // 1.8新增默认方法:用于比较执行double类型的键的比较 default Comparator<T> thenComparingDouble(ToDoubleFunction<? super T> keyExtractor) { return thenComparing(comparingDouble(keyExtractor)); } // 1.8新增静态方法:用于获得一个相反的排序的比较器,这里针对的是内置的排序方式(即继承Comparable) public static <T extends Comparable<? super T>> Comparator<T> reverseOrder() { return Collections.reverseOrder(); } // 1.8新增静态方法:用于获得一个实现了Comparable接口的类的比较方式的比较器 // 简言之就是将Comparable定义的比较方式使用Comparator实现 @SuppressWarnings("unchecked") public static <T extends Comparable<? super T>> Comparator<T> naturalOrder() { return (Comparator<T>) Comparators.NaturalOrderComparator.INSTANCE; } // 1.8新增静态方法:获得一个null亲和的比较器,null小于非null,两个null相等,若是全不是null, // 则使用指定的比较器比较,若未指定比较器,则非null所有相等返回0 public static <T> Comparator<T> nullsFirst(Comparator<? super T> comparator) { return new Comparators.NullComparator<>(true, comparator); } // 1.8新增静态方法:获得一个null亲和的比较器,null大于非null,两个null相等,若是全不是null, // 则使用指定的比较器比较,若未指定比较器,则非null所有相等返回0 public static <T> Comparator<T> nullsLast(Comparator<? super T> comparator) { return new Comparators.NullComparator<>(false, comparator); } // 1.8新增静态方法:使用指定的键比较器用于执行键的比较 public static <T, U> Comparator<T> comparing( Function<? super T, ? extends U> keyExtractor, Comparator<? super U> keyComparator) { Objects.requireNonNull(keyExtractor); Objects.requireNonNull(keyComparator); return (Comparator<T> & Serializable) (c1, c2) -> keyComparator.compare(keyExtractor.apply(c1), keyExtractor.apply(c2)); } // 1.8新增静态方法:执行键比较,采用内置比较方式,key的类必须实现Comparable public static <T, U extends Comparable<? super U>> Comparator<T> comparing( Function<? super T, ? extends U> keyExtractor) { Objects.requireNonNull(keyExtractor); return (Comparator<T> & Serializable) (c1, c2) -> keyExtractor.apply(c1).compareTo(keyExtractor.apply(c2)); } // 1.8新增静态方法:用于int类型键的比较 public static <T> Comparator<T> comparingInt(ToIntFunction<? super T> keyExtractor) { Objects.requireNonNull(keyExtractor); return (Comparator<T> & Serializable) (c1, c2) -> Integer.compare(keyExtractor.applyAsInt(c1), keyExtractor.applyAsInt(c2)); } // 1.8新增静态方法:用于long类型键的比较 public static <T> Comparator<T> comparingLong(ToLongFunction<? super T> keyExtractor) { Objects.requireNonNull(keyExtractor); return (Comparator<T> & Serializable) (c1, c2) -> Long.compare(keyExtractor.applyAsLong(c1), keyExtractor.applyAsLong(c2)); } // 1.8新增静态方法:用于double类型键的比较 public static<T> Comparator<T> comparingDouble(ToDoubleFunction<? super T> keyExtractor) { Objects.requireNonNull(keyExtractor); return (Comparator<T> & Serializable) (c1, c2) -> Double.compare(keyExtractor.applyAsDouble(c1), keyExtractor.applyAsDouble(c2)); } }
JDK1.8以前,Comparator中只要两个方法,就是前两个方法,后面的全部默认方法均为1.8新增的方法,采用的是1.8新增的功能:接口可添加默认方法。即使拥有如此多方法,该接口仍是函数式接口,compare用于定义比较方式
首先定义个类,Student
package com.wzj.strategy; /** * @Author: wzj * @Date: 2020/5/6 21:15 * @Desc: */ public class Student implements Comparable<Student>{ private int age; private String name; public Student(int age, String name) { this.age = age; this.name = name; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } public String getName() { return name; } public void setName(String name) { this.name = name; } @Override public int compareTo(Student o) { return this.age - o.age; } @Override public String toString() { return "Student{" + "age=" + age + ", name='" + name + '\'' + '}'; } }
定义年龄比较器
package com.wzj.strategy; import java.util.Comparator; /** * @Author: wzj * @Date: 2020/5/6 21:19 * @Desc: 年龄比较器 */ public class AgeComparator implements Comparator<Student> { @Override public int compare(Student o1, Student o2) { return o1.getAge() - o2.getAge(); } }
定义姓名比较器
package com.wzj.strategy; import java.util.Comparator; /** * @Author: wzj * @Date: 2020/5/6 21:19 * @Desc: 姓名比较器 */ public class NameComparator implements Comparator<Student> { @Override public int compare(Student o1, Student o2) { return o1.getName().charAt(0) - o2.getName().charAt(0); } }
测试类
package com.wzj.strategy; import java.util.Arrays; /** * @Author: wzj * @Date: 2020/5/6 21:24 * @Desc: */ public class TestComparator { public static void main(String[] args) { Student s1 = new Student(18, "zhangsan"); Student s2 = new Student(15, "lisi"); Student s3 = new Student(10,"wangwu"); Student[] students = {s1, s2, s3}; System.out.print("数组排序前:"); printArray(students); System.out.println(); Arrays.sort(students); System.out.print("数组经过Comparable接口排序后:"); printArray(students); System.out.println(); Arrays.sort(students, new AgeComparator()); System.out.print("数组经过年龄比较器AgeComparator排序后:"); printArray(students); System.out.println(); Arrays.sort(students, new NameComparator()); System.out.print("数组经过姓名比较器NameComparator排序后:"); printArray(students); } public static void printArray (Student[] students) { for (Student student : students) { System.out.print(student.toString() + ","); } } }
测试结果
数组排序前:Student{age=18, name='zhangsan'},Student{age=15, name='lisi'},Student{age=10, name='wangwu'}, 数组经过Comparable接口排序后:Student{age=10, name='wangwu'},Student{age=15, name='lisi'},Student{age=18, name='zhangsan'}, 数组经过年龄比较器AgeComparator排序后:Student{age=10, name='wangwu'},Student{age=15, name='lisi'},Student{age=18, name='zhangsan'}, 数组经过姓名比较器NameComparator排序后:Student{age=15, name='lisi'},Student{age=10, name='wangwu'},Student{age=18, name='zhangsan'},
Spring Bean 实例化,是经过InstantiationStrategy接口实现的,根据建立对象状况的不一样,提供了三种方法:无参构造方法、有参构造方法、工厂方法。以下
public interface InstantiationStrategy { /** * 默认构造方法 */ Object instantiate(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner) throws BeansException; /** * 指定构造方法 */ Object instantiate(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner, Constructor<?> ctor, @Nullable Object... args) throws BeansException; /** * 工厂方法 */ Object instantiate(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner, @Nullable Object factoryBean, Method factoryMethod, @Nullable Object... args) throws BeansException; }
InstantiationStrategy 接口有两个实现类:SimpleInstantiationStrategy 和 CglibSubclassingInstantiationStrategy。SimpleInstantiationStrategy 对以上三个方法都作了简单的实现。
若是是工厂方法实例化,则直接使用反射建立对象,以下:
public Object instantiate(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner, @Nullable Object factoryBean, final Method factoryMethod, @Nullable Object... args) { try { if (System.getSecurityManager() != null) { AccessController.doPrivileged((PrivilegedAction<Object>) () -> { ReflectionUtils.makeAccessible(factoryMethod); return null; }); } else { ReflectionUtils.makeAccessible(factoryMethod); } Method priorInvokedFactoryMethod = currentlyInvokedFactoryMethod.get(); try { currentlyInvokedFactoryMethod.set(factoryMethod); Object result = factoryMethod.invoke(factoryBean, args); if (result == null) { result = new NullBean(); } return result; } finally { if (priorInvokedFactoryMethod != null) { currentlyInvokedFactoryMethod.set(priorInvokedFactoryMethod); } else { currentlyInvokedFactoryMethod.remove(); } } } // 省略 catch }
若是是构造方法实例化,则是先判断是否有 MethodOverrides,若是没有则是直接使用反射,若是有则就须要 CGLIB 实例化对象。以下:
public Object instantiate(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner) { // Don't override the class with CGLIB if no overrides. if (!bd.hasMethodOverrides()) { Constructor<?> constructorToUse; synchronized (bd.constructorArgumentLock) { constructorToUse = (Constructor<?>) bd.resolvedConstructorOrFactoryMethod; if (constructorToUse == null) { final Class<?> clazz = bd.getBeanClass(); if (clazz.isInterface()) { throw new BeanInstantiationException(clazz, "Specified class is an interface"); } try { if (System.getSecurityManager() != null) { constructorToUse = AccessController.doPrivileged( (PrivilegedExceptionAction<Constructor<?>>) clazz::getDeclaredConstructor); } else { constructorToUse = clazz.getDeclaredConstructor(); } bd.resolvedConstructorOrFactoryMethod = constructorToUse; } catch (Throwable ex) { throw new BeanInstantiationException(clazz, "No default constructor found", ex); } } } return BeanUtils.instantiateClass(constructorToUse); } else { // Must generate CGLIB subclass. return instantiateWithMethodInjection(bd, beanName, owner); } } public Object instantiate(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner, final Constructor<?> ctor, @Nullable Object... args) { if (!bd.hasMethodOverrides()) { if (System.getSecurityManager() != null) { // use own privileged to change accessibility (when security is on) AccessController.doPrivileged((PrivilegedAction<Object>) () -> { ReflectionUtils.makeAccessible(ctor); return null; }); } return (args != null ? BeanUtils.instantiateClass(ctor, args) : BeanUtils.instantiateClass(ctor)); } else { return instantiateWithMethodInjection(bd, beanName, owner, ctor, args); } }
SimpleInstantiationStrategy 对 instantiateWithMethodInjection() 的实现任务交给了子类 CglibSubclassingInstantiationStrategy。
类 CglibSubclassingInstantiationStrategy 为 Spring 实例化 bean 的默认实例化策略,其主要功能仍是对父类功能进行补充:其父类将 CGLIB 的实例化策略委托其实现
//SimpleInstantiationStrategy protected Object instantiateWithMethodInjection(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner) { throw new UnsupportedOperationException("Method Injection not supported in SimpleInstantiationStrategy"); } //CglibSubclassingInstantiationStrategy @Override protected Object instantiateWithMethodInjection(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner) { return instantiateWithMethodInjection(bd, beanName, owner, null); }
CglibSubclassingInstantiationStrategy 实例化 bean 策略是经过其内部类 CglibSubclassCreator 来实现的。
protected Object instantiateWithMethodInjection(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner, @Nullable Constructor<?> ctor, @Nullable Object... args) { return new CglibSubclassCreator(bd, owner).instantiate(ctor, args); }
优势
缺点