花莲地震前 20 秒就已报警,地震精准预测再也不遥远?

使用深度学习、神经网络等机器学习技术,去分析和研究地震问题,可以分析出人们看不到的一些数据价值。在诸如余震、微地震的预测中,获得更高的准确率。算法

4 月 18 日 13 时 01 分,台湾花莲忽然发生 6.7 级地震。这是近 20 年来台湾地区最大的一次地震,靠近台湾海峡的多个地区都有震感。所幸,此次地震中只有几例意外受伤事件。数据库

据媒体消息,这次地震震感抵达以前,新北市就提早 20 秒收到了预警信息。前新北市「市长」朱立伦当时正在接受采访,采访画面也记录下了他收到预警的那一幕。网络

视频中提早收到的消息,称为地震预警。它是指在地震发生以后,提早向远离震中的区域发送警报,一般提早几十秒。虽然这项技术已经成熟,但也只能帮助到震区边缘的地区,而震中区域只能听天由命了。框架

与地震预警不一样,地震预报是在地震未发生时,就能准确预测出地震时间、位置和等级,而后能提早安排好对策。但由于地震成因复杂,数据稀少,直到今天,咱们依然没法准确预报地震。机器学习

据中国地震台网公布,全球几乎天天都有地震发生

不过,使人欣慰的是,虽然对地震的预测问题没被攻克,但近年来,科学家们已经开始尝试使用深度学习、神经网络等机器学习技术,去分析和研究地震问题,在诸如余震,微地震等预报中,均取得了良好的预测效果。性能

哈佛与谷歌联手:机器学习预测余震

地震发生每每都不是单独事件,在「主震」(一般是新闻头条级别的事件)后每每伴随着一系列 「余震」。这些余震数量众多,大的余震会带来严重的重复伤害。典型的例子就是 5 · 12 汶川地震,主震以后发生余震上万次,对救援工做形成了很大的威胁。学习

因此对余震的检测也是地震预测中重要的一环。传统的方法下,对余震发生的时间和等级,有一些经验性判断规则和方法,但一般没法准确预测位置,并且在操做中也须要繁琐的程序。测试

哈佛大学与 Google 的机器学习专家合做,尝试用深度学习来预测余震发生的位置。他们的研究取得了突破性的进展,最终的结果发布在 2018 年 8 月的 Nature 上。优化

1992 年南加州兰德斯 7.3 级地震的直观表示,其中多色部分表明最初的地震,红色方框表明余震位置 

他们的数据库,包含了世界各地发生的至少 199 次的大地震的信息数据。根据这个数据库,他们应用神经网络模型,主要分析了主震和余震位置引发的静态应力变化之间的关系,该算法可以从数据信息中识别出有用的模式。
人工智能

他们最终获得了最优的余震位置预报模型,虽然这个系统仍然有待完善,可是这意味着在这个方向又迈进了一步。

 预测兰德斯地震余震定位几率的分布。深红色表示预计会经历余震的区域。黑点是观察到的余震的位置,黄线表示在主震期间破裂的断层

这项研究还获得了一个意外的收获:它帮助该团队肯定了地震中涉及的物理量,这对地震研究很是重要。人们将神经网络应用于数据集时,可以深刻洞察出对预测相当重要的特定因素组合,而不只仅是将预测结果视为表面上的数值。

团队成员之一 Meade 曾解释道:「传统的地震学家更像病理学家,他们研究灾难性地震事件后会发生什么。咱们不想作这些,而是更想成为流行病学家,咱们想了解这些事件的诱发因素、缘由。」

期待在将来,机器学习能够揭开地震背后的奥秘,并减小它带来灾害。

从 550000  个地震样本中学会预测

在哈佛和谷歌提出的 AI 模型基础上,斯坦福大学研究人员也建立了一我的工智能模型,专一于检测和预报微地震,最终也获得了很高的准确率。

微地震或称低强度地震,是指瞬时震级在 2.0 或更小的震级,这种地震破坏性较小,但因为背景噪声,小事件和误报等因素,它们有时会被地震监测系统所遗漏。

斯坦福大学构建的 AI 模型,被称为 Cnn-Rnn 地震探测器( CRED ),能够经过连续记录的历史数据,准确揪出微地震的信息。

这个系统由两种神经网络层组成:卷积神经网络( CNN )和递归神经网络( RNN )。CNN 从地震传感器中提取特征,而 RNN 能够结合记忆和输入数据,提升其预测的准确性,学习相似地震仪的序列特征。

这二者构成了一个残差学习框架,这么作是为了缓解多层神经网络会出现的过拟和等问题。经过这样的方式,神经网络既可以保持它们的准确性,又可以从数据集中学习更多详细特征。此外,会更容易优化。

为了训练和验证地震探测 AI 系统,研究人员采集了阿肯色州 Guy-Greenbrier ,在 2011 年的连续的记录数据,其中包含 3,788 个事件,此外还有北加州 889 个监测站,550,000 个 时长 30 秒,包含 3 个指标的地震图。

用于训练的数据集统计

550000 个数据中的 50000 个样本被用于评估性能。结果是不管地震等级大小,是否局部发生,有没有很强的背景噪声,网络模型都可以准确的识别出地震信号。更重要的是,AI 只须要部分记录就能检测地震。

当从 Guy-Greenbrier 数据集中获取连续数据时,该模型花费近一个小时在计算机上进行训练,检测到由水力压裂,废水注入和构造板块运动引发的 1,102 次微地震和大地震,其中包括 77 次并未曾被记录过的。

报告指出,在全部测试中,与两个普遍部署的地震系统相比,学习模型展示了「优越」的性能。由于计算机模型能分析出人们看不到的一些数据价值。

使用不一样算法检测事件的幅度 - 频率分布,CERD 展示了「优越」的性能

此外,模型的可扩展性也获得了提高他们写道,「经过训练,模型能够实时应用于地震数据流。而基于其光谱结构的地震信号,是一种高分辨率的建模方式,误报率很小。」

该团队认为,机器学习模型能够轻松扩展到多个传感器,能够在构造活动区域进行实时监控,也能够做为早期地震预警系统的基础。

若是对微小地震的判断足够精确,那么这对预报模型用在大地震的预测上,就有了重要的意义。

将来地震预报或可期

机器学习技术能够被大量地用于保存过去地震的模拟记录。随着记录这些数据的媒体逐渐退化,地震学家正在争分夺秒地保护这些有价值的信息。

一些研究人员正在使用机器学习算法筛选地震数据,以更好地识别地震余震,火山地震活动,并监测形成震动的预兆,这些震动标志着可能发生巨大地震的板块边界的变形。

还有一些研究员,使用机器学习技术来定位地震起源并将小地震与环境中的其余地震「噪声」区分开来。

很长的一段时间里,一部分学者都认为彻底的预测地震是不可能的事情。但从目前研究结果看来,或许对地震的预测再也不是「不可能」。经过对余震以及微地震的准确预测,也许在不远的未来,大地震的预报难题可以被攻克。

天灾不可控,只愿咱们能借现代技术的力量,让天灾再也不对任何人形成伤害。

期待那么一天,基于机器学习的预测会有助于部署紧急服务,并为有余震风险的地区提供疏散计划。

本站公众号
   欢迎关注本站公众号,获取更多信息