NLP入门(一)词袋模型及句子类似度

  本文做为笔者NLP入门系列文章第一篇,之后咱们就要步入NLP时代。
  本文将会介绍NLP中常见的词袋模型(Bag of Words)以及如何利用词袋模型来计算句子间的类似度(余弦类似度,cosine similarity)。
  首先,让咱们来看一下,什么是词袋模型。咱们如下面两个简单句子为例:python

sent1 = "I love sky, I love sea."
sent2 = "I like running, I love reading."

  一般,NLP没法一会儿处理完整的段落或句子,所以,第一步每每是分句和分词。这里只有句子,所以咱们只须要分词便可。对于英语句子,可使用NLTK中的word_tokenize函数,对于中文句子,则可以使用jieba模块。故第一步为分词,代码以下:web

from nltk import word_tokenize
sents = [sent1, sent2]
texts = [[word for word in word_tokenize(sent)] for sent in sents]

输出的结果以下:算法

[['I', 'love', 'sky', ',', 'I', 'love', 'sea', '.'], ['I', 'like', 'running', ',', 'I', 'love', 'reading', '.']]

  分词完毕。下一步是构建语料库,即全部句子中出现的单词及标点。代码以下:微信

all_list = []
for text in texts:
    all_list += text
corpus = set(all_list)
print(corpus)

输出以下:app

{'love', 'running', 'reading', 'sky', '.', 'I', 'like', 'sea', ','}

  能够看到,语料库中一共是8个单词及标点。接下来,对语料库中的单词及标点创建数字映射,便于后续的句子的向量表示。代码以下:函数

corpus_dict = dict(zip(corpus, range(len(corpus))))
print(corpus_dict)

输出以下:code

{'running': 1, 'reading': 2, 'love': 0, 'sky': 3, '.': 4, 'I': 5, 'like': 6, 'sea': 7, ',': 8}

  虽然单词及标点并无按照它们出现的顺序来创建数字映射,不过这并不会影响句子的向量表示及后续的句子间的类似度。
  下一步,也就是词袋模型的关键一步,就是创建句子的向量表示。这个表示向量并非简单地以单词或标点出现与否来选择0,1数字,而是把单词或标点的出现频数做为其对应的数字表示,结合刚才的语料库字典,句子的向量表示的代码以下:token

# 创建句子的向量表示
def vector_rep(text, corpus_dict):
    vec = []
    for key in corpus_dict.keys():
        if key in text:
            vec.append((corpus_dict[key], text.count(key)))
        else:
            vec.append((corpus_dict[key], 0))

    vec = sorted(vec, key= lambda x: x[0])

    return vec

vec1 = vector_rep(texts[0], corpus_dict)
vec2 = vector_rep(texts[1], corpus_dict)
print(vec1)
print(vec2)

输出以下:ip

[(0, 2), (1, 0), (2, 0), (3, 1), (4, 1), (5, 2), (6, 0), (7, 1), (8, 1)]
[(0, 1), (1, 1), (2, 1), (3, 0), (4, 1), (5, 2), (6, 1), (7, 0), (8, 1)]

让咱们稍微逗留一下子,来看看这个向量。在第一句中I出现了两次,在预料库字典中,I对应的数字为5,所以在第一句中5出现2次,在列表中的元组即为(5,2),表明单词I在第一句中出现了2次。以上的输出可能并不那么直观,真实的两个句子的表明向量应为:it

[2, 0, 0, 1, 1, 2, 0, 1, 1]
[1, 1, 1, 0, 1, 2, 1, 0, 1]

  OK,词袋模型到此结束。接下来,咱们会利用刚才获得的词袋模型,即两个句子的向量表示,来计算类似度。
  在NLP中,若是获得了两个句子的向量表示,那么,通常会选择用余弦类似度做为它们的类似度,而向量的余弦类似度即为两个向量的夹角的余弦值。其计算的Python代码以下:

from math import sqrt
def similarity_with_2_sents(vec1, vec2):
    inner_product = 0
    square_length_vec1 = 0
    square_length_vec2 = 0
    for tup1, tup2 in zip(vec1, vec2):
        inner_product += tup1[1]*tup2[1]
        square_length_vec1 += tup1[1]**2
        square_length_vec2 += tup2[1]**2

    return (inner_product/sqrt(square_length_vec1*square_length_vec2))


cosine_sim = similarity_with_2_sents(vec1, vec2)
print('两个句子的余弦类似度为: %.4f。'%cosine_sim)

输出结果以下:

两个句子的余弦类似度为: 0.7303。

  这样,咱们就经过句子的词袋模型,获得了它们间的句子类似度。
  固然,在实际的NLP项目中,若是须要计算两个句子的类似度,咱们只需调用gensim模块便可,它是NLP的利器,可以帮助咱们处理不少NLP任务。下面为用gensim计算两个句子的类似度的代码:

sent1 = "I love sky, I love sea."
sent2 = "I like running, I love reading."

from nltk import word_tokenize
sents = [sent1, sent2]
texts = [[word for word in word_tokenize(sent)] for sent in sents]
print(texts)

from gensim import corpora
from gensim.similarities import Similarity

#  语料库
dictionary = corpora.Dictionary(texts)

# 利用doc2bow做为词袋模型
corpus = [dictionary.doc2bow(text) for text in texts]
similarity = Similarity('-Similarity-index', corpus, num_features=len(dictionary))
print(similarity)
# 获取句子的类似度
new_sensence = sent1
test_corpus_1 = dictionary.doc2bow(word_tokenize(new_sensence))

cosine_sim = similarity[test_corpus_1][1]
print("利用gensim计算获得两个句子的类似度: %.4f。"%cosine_sim)

输出结果以下:

[['I', 'love', 'sky', ',', 'I', 'love', 'sea', '.'], ['I', 'like', 'running', ',', 'I', 'love', 'reading', '.']]
Similarity index with 2 documents in 0 shards (stored under -Similarity-index)
利用gensim计算获得两个句子的类似度: 0.7303。

注意,若是在运行代码时出现如下warning:

gensim\utils.py:1209: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
  warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")

gensim\matutils.py:737: FutureWarning: Conversion of the second argument of issubdtype from `int` to `np.signedinteger` is deprecated. In future, it will be treated as `np.int32 == np.dtype(int).type`.
  if np.issubdtype(vec.dtype, np.int):

若是想要去掉这些warning,则在导入gensim模块的代码前添加如下代码便可:

import warnings
warnings.filterwarnings(action='ignore',category=UserWarning,module='gensim')
warnings.filterwarnings(action='ignore',category=FutureWarning,module='gensim')

  本文到此结束,感谢阅读!若是不当之处,请速联系笔者,欢迎你们交流!祝您好运~

注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎你们关注哦~~

相关文章
相关标签/搜索